MIXED MODELS FOR NUTRIENTS PREDICTION IN SPECIES OF THE BRAZILIAN CAATINGA BIOME

IF 0.6 4区 农林科学 Q4 FORESTRY Revista Arvore Pub Date : 2023-09-04 DOI:10.1590/1806-908820230000012
J. C. D. Abreu, José Antônio Aleixo da Silva, R. Ferreira, S. J. S. S. D. Rocha, Ivaldo da Silva Tavares Júnior, A. A. Farias, Paulo Henrique Villanova, Aguida Beatriz Travaglia Viana, B. Schettini, L. A. A. Telles, Arthur Araújo Silva
{"title":"MIXED MODELS FOR NUTRIENTS PREDICTION IN SPECIES OF THE BRAZILIAN CAATINGA BIOME","authors":"J. C. D. Abreu, José Antônio Aleixo da Silva, R. Ferreira, S. J. S. S. D. Rocha, Ivaldo da Silva Tavares Júnior, A. A. Farias, Paulo Henrique Villanova, Aguida Beatriz Travaglia Viana, B. Schettini, L. A. A. Telles, Arthur Araújo Silva","doi":"10.1590/1806-908820230000012","DOIUrl":null,"url":null,"abstract":"ABSTRACT Nutrient prediction models applied to tree species from Brazilian Caatinga can be a crucial tool in understanding this biome. The study aimed to fit a mixed model to predict nitrogen (N), phosphorus (P), and potassium (K) content in tree species native to the Caatinga biome located in Floresta municipality, Pernambuco State – PE, Brazil. The following species were considered the area’s most important and evaluated in the present study: Poincianella bracteosa (Tul.) L.P.Queiroz, Mimosa ophtalmocentra Mart. ex Benth, Aspidosperma pyrifolium Mart, Cnidoscolus quercifolius (Mull. Arg.) Pax. & Hoffm, and Anadenanthera colubrina var. cebil (Griseb.) Altschul. Four trees, representing the average circumference in each diameter class, were harvested for NPK quantification. The Spurr model was evaluated for NPK prediction, and species inclusion as a random effect was significant (p > 0.05) in all models. The Spurr model with fixed and random effects presented better statistics than fixed-effect models in all parameters for all nutrients. Generated NPK predicting equations can be a handy tool to understand the impact of wood extraction over Caatinga’s biogeochemical cycles and guide forest management strategies in semi-arid regions of the world.","PeriodicalId":21214,"journal":{"name":"Revista Arvore","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Arvore","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1806-908820230000012","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Nutrient prediction models applied to tree species from Brazilian Caatinga can be a crucial tool in understanding this biome. The study aimed to fit a mixed model to predict nitrogen (N), phosphorus (P), and potassium (K) content in tree species native to the Caatinga biome located in Floresta municipality, Pernambuco State – PE, Brazil. The following species were considered the area’s most important and evaluated in the present study: Poincianella bracteosa (Tul.) L.P.Queiroz, Mimosa ophtalmocentra Mart. ex Benth, Aspidosperma pyrifolium Mart, Cnidoscolus quercifolius (Mull. Arg.) Pax. & Hoffm, and Anadenanthera colubrina var. cebil (Griseb.) Altschul. Four trees, representing the average circumference in each diameter class, were harvested for NPK quantification. The Spurr model was evaluated for NPK prediction, and species inclusion as a random effect was significant (p > 0.05) in all models. The Spurr model with fixed and random effects presented better statistics than fixed-effect models in all parameters for all nutrients. Generated NPK predicting equations can be a handy tool to understand the impact of wood extraction over Caatinga’s biogeochemical cycles and guide forest management strategies in semi-arid regions of the world.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巴西caatinga生物群系物种营养预测的混合模型
应用于巴西Caatinga树种的营养预测模型可以成为了解该生物群系的重要工具。该研究旨在拟合一个混合模型来预测位于巴西伯南布哥州弗洛雷斯塔市Caatinga生物群落的原生树种的氮(N)、磷(P)和钾(K)含量。以下物种被认为是该地区最重要的,并在本研究中进行了评估:Poincianella bracteosa (Tul。l.p.k eiroz,含羞草眼科中心。前底,梨叶穗轴,槲皮穗轴。参数)。Pax。& Hoffm, and Anadenanthera colubrina var. cebil (Griseb.)Altschul。取4棵树,代表每个直径级的平均周长,进行氮磷钾量化。对spr模型进行了NPK预测,所有模型中物种包含作为随机效应显著(p > 0.05)。具有固定效应和随机效应的Spurr模型在所有营养物质的所有参数上都比固定效应模型具有更好的统计性。生成的NPK预测方程可以作为一个方便的工具来了解木材开采对Caatinga生物地球化学循环的影响,并指导世界半干旱地区的森林管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Arvore
Revista Arvore FORESTRY-
CiteScore
1.00
自引率
0.00%
发文量
32
审稿时长
4-8 weeks
期刊介绍: A Revista Árvore é um veículo de comunicação científica da Sociedade de Investigações Florestais – SIF. O jornal é de acesso gratuito, revisado por pares, que publica bimestralmente trabalhos científicos originais no campo da Ciência Florestal. As áreas temáticas para publicação são: Ambiência e Conservação da Natureza, Manejo Florestal, Silvicultura e Tecnologia da Madeira e Utilização de Produtos Florestais. A política editorial visa manter alta conduta ética em relação à publicação e aos seus funcionários, rigor na qualidade dos artigos científicos, seleção de revisores qualificados, respeito profissional aos autores e processo de tomada de decisão imparcial. A Revista Árvore publica artigos apenas em inglês. Artigos de revisão podem ser publicados se houver uma discussão relevante resumindo o estado da arte sobre o assunto. A revisão estrita da literatura não é aceita.
期刊最新文献
MIXED MODELS FOR NUTRIENTS PREDICTION IN SPECIES OF THE BRAZILIAN CAATINGA BIOME EMERGENCE, INITIAL GROWTH, AND SEEDLING QUALITY OF Eremanthus incanus: SUBSIDIES FOR GENETIC BREEDING AND CONSERVATION VEGETATIVE RESCUE AND PROPAGATION OF NATIVE Ilex paraguariensis POPULATIONS IN SANTA CATARINA STATE, BRAZIL EFFECT OF pH ON THE ANTIBACTERIAL AND ANTIFUNGAL ACTIVITY OF WOOD VINEGAR (PYROLIGNEOUS EXTRACT) FROM EUCALYPTUS CHARACTERISTIC STRENGTHS IN THE COMPRESSION AND IN THE STATIC BENDING AS PARAMETERS TO ESTIMATE CHARACTERISTIC SHEAR STRENGTH FOR TIMBER DESIGN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1