Production of Potential Substitutes for Conventional Plastics Using Metabolically Engineered Acetobacterium woodii

IF 3.3 3区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Fermentation-Basel Pub Date : 2023-08-30 DOI:10.3390/fermentation9090799
Franziska Höfele, P. Dürre
{"title":"Production of Potential Substitutes for Conventional Plastics Using Metabolically Engineered Acetobacterium woodii","authors":"Franziska Höfele, P. Dürre","doi":"10.3390/fermentation9090799","DOIUrl":null,"url":null,"abstract":"Increasing greenhouse gas emissions and decreasing fossil fuel supplies necessitate the development of alternative methods for producing petroleum-based commodities. Plastics are also primarily petroleum-based goods with rising demand, thus there is growing interest in plastic substitutes. Polyhydroxyalkanoates (PHAs) are naturally produced biopolymers that are utilized by microorganisms as a source of energy and carbon storage. Poly-3-hydroxybutyrate (PHB) is a member of the PHA family and is considered the most promising candidate to replace polyethylene (PE). PHB is naturally produced by Cupriavidus necator, but recombinant production has also been recently established. This study is the first to investigate the heterologous production of PHB with recombinant Acetobacterium woodii using CO2 + H2 as a carbon and energy source. The introduction of a synthetic PHB production pathway resulted in the production of 1.23 g/L CDW and 1.9% PHB/cell dry weight (CDW), which corresponds to a production of 23.5 mg/L PHB. PHB quantification was simplified using LipidGreen2 fluorescence measurements.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fermentation9090799","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Increasing greenhouse gas emissions and decreasing fossil fuel supplies necessitate the development of alternative methods for producing petroleum-based commodities. Plastics are also primarily petroleum-based goods with rising demand, thus there is growing interest in plastic substitutes. Polyhydroxyalkanoates (PHAs) are naturally produced biopolymers that are utilized by microorganisms as a source of energy and carbon storage. Poly-3-hydroxybutyrate (PHB) is a member of the PHA family and is considered the most promising candidate to replace polyethylene (PE). PHB is naturally produced by Cupriavidus necator, but recombinant production has also been recently established. This study is the first to investigate the heterologous production of PHB with recombinant Acetobacterium woodii using CO2 + H2 as a carbon and energy source. The introduction of a synthetic PHB production pathway resulted in the production of 1.23 g/L CDW and 1.9% PHB/cell dry weight (CDW), which corresponds to a production of 23.5 mg/L PHB. PHB quantification was simplified using LipidGreen2 fluorescence measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用代谢工程木醋杆菌生产传统塑料的潜在替代品
温室气体排放的增加和化石燃料供应的减少要求开发生产石油基商品的替代方法。塑料也是主要以石油为基础的产品,需求不断增长,因此人们对塑料替代品的兴趣越来越大。聚羟基烷酸酯(PHAs)是一种天然产生的生物聚合物,被微生物用作能量和碳储存的来源。聚3-羟基丁酸酯(PHB)是PHA家族的一员,被认为是最有希望取代聚乙烯(PE)的候选材料。PHB是由Cupriavidus necator自然产生的,但最近也建立了重组生产。本研究首次以CO2 + H2为碳源和能量源,研究了重组伍迪醋酸杆菌的异源生产PHB。引入合成PHB生产途径后,CDW的产量为1.23 g/L, PHB/细胞干重(CDW)为1.9%,相当于PHB的产量为23.5 mg/L。使用LipidGreen2荧光测量简化PHB定量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fermentation-Basel
Fermentation-Basel BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
3.80
自引率
18.90%
发文量
594
审稿时长
7 weeks
期刊最新文献
The Application of Corynebacterium glutamicum in l-Threonine Biosynthesis Volatile Fatty Acid Recovery from Arrested Anaerobic Digestion for the Production of Sustainable Aviation Fuel: A Review Impact of Thermo-Mechanical Pretreatment of Sargassum muticum on Anaerobic Co-Digestion with Wheat Straw Solid-State Fermentation as a Sustainable Tool for Extracting Phenolic Compounds from Cascalote Pods Temperature and pH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro-Industrial Waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1