Comparison of Constitutive Models for predicting the formability of SS 304 by tubular hydroforming process

P. V. Reddy
{"title":"Comparison of Constitutive Models for predicting the formability of SS 304 by tubular hydroforming process","authors":"P. V. Reddy","doi":"10.4018/ijmmme.293227","DOIUrl":null,"url":null,"abstract":"Finite Element (FE) simulation of sheet/tube forming precision depends mainly on the accuracy of the constitutive modeling. The present paper aim is to compare the constitutive models to fit the stress-strain curves. The accurate deformation behavior of the SS 304 tubes depends on the constitutive modeling of hardening behavior. Deformation data of the tensile specimens cut from tubular sample were collected by conducting Uniaxial tensile tests (UTT) at three different rolling directions. Five constitutive relationships were then recognized by fitting the true stress and strain data with the constitutive models of Hollomon, Power, Krupowsky, Voce and Ghosh, and the fitting accuracy were analyzed and compared. Effects of hardening models on Forming Limit Curves (FLC), pressure loading and bulge height of the hydroformed tube were then studied. The obtained FLC from the simulations were compared with experimental FLC to predict the accuracy of the hardening models.","PeriodicalId":43174,"journal":{"name":"International Journal of Manufacturing Materials and Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Manufacturing Materials and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijmmme.293227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Finite Element (FE) simulation of sheet/tube forming precision depends mainly on the accuracy of the constitutive modeling. The present paper aim is to compare the constitutive models to fit the stress-strain curves. The accurate deformation behavior of the SS 304 tubes depends on the constitutive modeling of hardening behavior. Deformation data of the tensile specimens cut from tubular sample were collected by conducting Uniaxial tensile tests (UTT) at three different rolling directions. Five constitutive relationships were then recognized by fitting the true stress and strain data with the constitutive models of Hollomon, Power, Krupowsky, Voce and Ghosh, and the fitting accuracy were analyzed and compared. Effects of hardening models on Forming Limit Curves (FLC), pressure loading and bulge height of the hydroformed tube were then studied. The obtained FLC from the simulations were compared with experimental FLC to predict the accuracy of the hardening models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测管状高压成形性能的本构模型比较
板管成形的有限元模拟精度主要取决于本构建模的精度。本文的目的是比较本构模型来拟合应力-应变曲线。SS 304管的精确变形行为取决于硬化行为的本构建模。通过三种不同轧制方向的单轴拉伸试验(UTT),采集了管状试样的拉伸试样变形数据。将真实应力应变数据与Hollomon、Power、Krupowsky、Voce和Ghosh的本构模型进行拟合,识别出5种本构关系,并对拟合精度进行了分析比较。研究了硬化模型对高压成形管成形极限曲线(FLC)、压力载荷和胀高的影响。将模拟得到的FLC与实验FLC进行了比较,以预测硬化模型的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
21
期刊最新文献
Ultrasonic Bonding of Ag Ribbon on Si Wafers With Various Backside Metallization Window analysis and MPI for efficiency and productivity assessment under fuzzy data Low-Temperature Direct Bonding of 3D-IC Packages and Power IC Modules Using Ag Nanotwinned Thin Films Influence of cutting parameters on machinability of DSS 2205 and SDSS 2507 materials during milling Island-matrix inhomogeneous deformation behavior, formation of deformation band and BUT forming of DP steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1