A methodology for coffee price forecasting based on extreme learning machines

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY Information Processing in Agriculture Pub Date : 2022-12-01 DOI:10.1016/j.inpa.2021.07.003
Carolina Deina , Matheus Henrique do Amaral Prates , Carlos Henrique Rodrigues Alves , Marcella Scoczynski Ribeiro Martins , Flavio Trojan , Sergio Luiz Stevan Jr. , Hugo Valadares Siqueira
{"title":"A methodology for coffee price forecasting based on extreme learning machines","authors":"Carolina Deina ,&nbsp;Matheus Henrique do Amaral Prates ,&nbsp;Carlos Henrique Rodrigues Alves ,&nbsp;Marcella Scoczynski Ribeiro Martins ,&nbsp;Flavio Trojan ,&nbsp;Sergio Luiz Stevan Jr. ,&nbsp;Hugo Valadares Siqueira","doi":"10.1016/j.inpa.2021.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>This work introduces a methodology to estimate coffee prices based on the use of Extreme Learning Machines. The process is initiated by identifying the presence of nonstationary components, like seasonality and trend. These components are withdrawn if they are found. Next, the temporal lags are selected based on the response of the Partial Autocorrelation Function filter. As predictors, we address the following models: Exponential Smoothing (ES), Autoregressive (AR) and Autoregressive Integrated and Moving Average (ARIMA) models, Multilayer Perceptron (MLP) and Extreme Learning Machines (ELMs) neural networks. The computational results based on three error metrics and two coffee types (Arabica and Robusta) showed that the neural networks, especially the ELM, can reach higher performance levels than the other models. The methodology, which presents preprocessing stages, lag selection, and use of ELM, is a novelty that contributes to the coffee prices forecasting field.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"9 4","pages":"Pages 556-565"},"PeriodicalIF":7.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.inpa.2021.07.003","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 16

Abstract

This work introduces a methodology to estimate coffee prices based on the use of Extreme Learning Machines. The process is initiated by identifying the presence of nonstationary components, like seasonality and trend. These components are withdrawn if they are found. Next, the temporal lags are selected based on the response of the Partial Autocorrelation Function filter. As predictors, we address the following models: Exponential Smoothing (ES), Autoregressive (AR) and Autoregressive Integrated and Moving Average (ARIMA) models, Multilayer Perceptron (MLP) and Extreme Learning Machines (ELMs) neural networks. The computational results based on three error metrics and two coffee types (Arabica and Robusta) showed that the neural networks, especially the ELM, can reach higher performance levels than the other models. The methodology, which presents preprocessing stages, lag selection, and use of ELM, is a novelty that contributes to the coffee prices forecasting field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于极限学习机的咖啡价格预测方法
这项工作介绍了一种基于使用极限学习机来估计咖啡价格的方法。这个过程是通过识别非平稳成分的存在而开始的,比如季节性和趋势。如果发现这些组件,则将其撤回。其次,根据部分自相关函数滤波器的响应选择时间滞后。作为预测器,我们解决以下模型:指数平滑(ES),自回归(AR)和自回归集成和移动平均(ARIMA)模型,多层感知器(MLP)和极限学习机(elm)神经网络。基于三个误差指标和两种咖啡类型(阿拉比卡和罗布斯塔)的计算结果表明,神经网络,特别是ELM模型比其他模型可以达到更高的性能水平。该方法提出了预处理阶段,滞后选择和ELM的使用,是一种新颖的方法,有助于咖啡价格预测领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
期刊最新文献
Editorial Board Artificial intelligence solutions to reduce information asymmetry for Colombian cocoa small-scale farmers Automated detection of sugarcane crop lines from UAV images using deep learning Detection and counting method of juvenile abalones based on improved SSD network Constrained temperature and relative humidity predictive control: Agricultural greenhouse case of study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1