Case study of advanced processed OFHC copper by dry sliding wear test

IF 1.1 Q3 METALLURGY & METALLURGICAL ENGINEERING Acta Metallurgica Slovaca Pub Date : 2023-03-23 DOI:10.36547/ams.29.1.1734
R. Bidulský, J. Bidulská, T. Kvačkaj, M. Grande
{"title":"Case study of advanced processed OFHC copper by dry sliding wear test","authors":"R. Bidulský, J. Bidulská, T. Kvačkaj, M. Grande","doi":"10.36547/ams.29.1.1734","DOIUrl":null,"url":null,"abstract":"The wear behaviour of copper material processed by ECAP (Equal Channel Angular Pressing) and orbital forging (OF) is presented in this study. Dry sliding wear tests were carried out for the wear behaviour of the investigated system. Oxygen-free high thermal conductivity (OFHC) copper was used for testing. The new combination of metal forming processes was used because of ease of fabrication. Additionally, wear rate, friction coefficient and wears mechanisms were observed. The friction resistance is caused by the destruction of the adhesion between surface asperities in metal friction. Moreover, increased asperity interactions connected with wear particle entrapment gradually increase the friction coefficient. These results show the metal forming process's positive influence in reducing interfacial adhesion and asperity deformation. Finally, the combinations of newly used advanced processing demonstrated excellent wear characteristics of copper.","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36547/ams.29.1.1734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The wear behaviour of copper material processed by ECAP (Equal Channel Angular Pressing) and orbital forging (OF) is presented in this study. Dry sliding wear tests were carried out for the wear behaviour of the investigated system. Oxygen-free high thermal conductivity (OFHC) copper was used for testing. The new combination of metal forming processes was used because of ease of fabrication. Additionally, wear rate, friction coefficient and wears mechanisms were observed. The friction resistance is caused by the destruction of the adhesion between surface asperities in metal friction. Moreover, increased asperity interactions connected with wear particle entrapment gradually increase the friction coefficient. These results show the metal forming process's positive influence in reducing interfacial adhesion and asperity deformation. Finally, the combinations of newly used advanced processing demonstrated excellent wear characteristics of copper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先进加工OFHC铜干式滑动磨损试验研究
研究了等通道角挤压(ECAP)和轨道锻造(of)对铜材料的磨损行为。对所研究的系统的磨损行为进行了干滑动磨损试验。使用无氧高导热性(OFHC)铜进行测试。由于易于制造,采用了金属成型工艺的新组合。此外,还观察了磨损率、摩擦系数和磨损机理。摩擦阻力是由金属摩擦中表面微凸体之间的粘附力被破坏引起的。此外,与磨损颗粒截留相关的凹凸相互作用的增加逐渐增加了摩擦系数。这些结果表明,金属成形工艺在减少界面粘附和凹凸变形方面具有积极影响。最后,新使用的先进工艺组合展示了铜优异的磨损特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Metallurgica Slovaca
Acta Metallurgica Slovaca METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
2.00
自引率
30.00%
发文量
22
审稿时长
12 weeks
期刊最新文献
PHYSICO-MECHANICAL PROPERTIES OF POLYMER MATRIX COMPOSITE MATERIAL REINFORCED WITH CARBONIZED CASSAVA BACK PEEL AND IRON FILLINGS EFFECT OF MIXING METHODS PRIOR THE DECOMPOSITION PROCESS ON THE DECOMPOSED FERRONICKEL SLAG WEAR AND ADHESION PROPERTIES OF MULTILAYER Ti/TiN ,(TiC)/TiCN/TaN THIN FILMS DEPOSITED ON Ti13Nb13Zr ALLOY BY CLOSE FIELD UNBALANCED MAGNETRON SPUTTERING Explicit and Implicit Integration of Constitutive Equations of Chaboche Isotropic-Kinematic Hardening Material Model INFLUENCE OF SINTERING TEMPERATURE ON THE STRUCTURAL OF Mg2Si0.3Sn0.7 ALLOY PREPARED BY POWDER METALLURGY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1