J. Buxton, K. Shields, H. Nhean, Jared Ramsey, Christopher Adams, George A. Richards
{"title":"Fatigue Effects on Peak Plantar Pressure and Bilateral Symmetry during Gait at Various Speeds","authors":"J. Buxton, K. Shields, H. Nhean, Jared Ramsey, Christopher Adams, George A. Richards","doi":"10.3390/biomechanics3030027","DOIUrl":null,"url":null,"abstract":"Fatigue-related changes in gait biomechanics, specifically plantar pressures, are well documented in the general population. However, research is generally confined to unilateral measures across a limited range of speeds, while changes in more well-trained populations remain largely unknown. Therefore, we sought to assess the impact of fatigue on bilateral peak plantar pressure (PP) and plantar pressure symmetry angle (SA) in well-trained runners across a range of speeds. Data from 16 (females, n = 9) well-trained runners were collected using in-sole pressure sensors pre- and post-fatigue at the following speeds: walking (1.3 m/s), jogging (2.7 m/s), running (3.3 m/s), and sprinting (4.5 m/s). Pre-fatigue PP significantly increased from walking to jogging (p < 0.001) and from jogging to running (p < 0.005) with no difference between running and sprinting (p > 0.05). Post-fatigue PP for walking was less than jogging (p < 0.002), running (p < 0.001), and sprinting (p < 0.001), with no other significant differences (p > 0.05). Post-fatigue PP was significantly greater when compared to pre-fatigue PP at all speeds (p < 0.001 for all). Though SA was not significantly different pre- to post-fatigue across speeds (p’s > 0.05) at the cohort level, noteworthy changes were observed at the individual level. Overall, fatigue effects are present at all running speeds but isolating these effects to a single side (left or right) may be inadequate.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomechanics3030027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fatigue-related changes in gait biomechanics, specifically plantar pressures, are well documented in the general population. However, research is generally confined to unilateral measures across a limited range of speeds, while changes in more well-trained populations remain largely unknown. Therefore, we sought to assess the impact of fatigue on bilateral peak plantar pressure (PP) and plantar pressure symmetry angle (SA) in well-trained runners across a range of speeds. Data from 16 (females, n = 9) well-trained runners were collected using in-sole pressure sensors pre- and post-fatigue at the following speeds: walking (1.3 m/s), jogging (2.7 m/s), running (3.3 m/s), and sprinting (4.5 m/s). Pre-fatigue PP significantly increased from walking to jogging (p < 0.001) and from jogging to running (p < 0.005) with no difference between running and sprinting (p > 0.05). Post-fatigue PP for walking was less than jogging (p < 0.002), running (p < 0.001), and sprinting (p < 0.001), with no other significant differences (p > 0.05). Post-fatigue PP was significantly greater when compared to pre-fatigue PP at all speeds (p < 0.001 for all). Though SA was not significantly different pre- to post-fatigue across speeds (p’s > 0.05) at the cohort level, noteworthy changes were observed at the individual level. Overall, fatigue effects are present at all running speeds but isolating these effects to a single side (left or right) may be inadequate.