Definition of a Global Coordinate System in the Foot for the Surgical Planning of Forefoot Corrections

Sanne Krakers, Anil Peters, Sybrand Homan, Judith olde Heuvel, Gabriëlle Tuijthof
{"title":"Definition of a Global Coordinate System in the Foot for the Surgical Planning of Forefoot Corrections","authors":"Sanne Krakers, Anil Peters, Sybrand Homan, Judith olde Heuvel, Gabriëlle Tuijthof","doi":"10.3390/biomechanics3040042","DOIUrl":null,"url":null,"abstract":"Forefoot osteotomies to improve the alignment are difficult procedures and can lead to a variety of complications. Preoperative planning in three dimensions might assist in the successful management of forefoot deformities. The purpose of this study was to develop a global coordinate system in the foot for the planning of forefoot corrections. Two strategies (CS1 and CS2) were developed for defining a global coordinate system that meets the criteria of being well-defined, robust, highly repeatable, clinically relevant, compatible with foot CT scans, independent of the ankle joint angle, and does not include bones in the forefoot. The absolute angle of rotation was used to quantify repeatability. The anatomical planes of the coordinate systems were visually inspected by an orthopedic surgeon to evaluate the clinical relevancy. The repeatability of CS1 ranged from 0.48° to 5.86°. The definition of CS2 was fully automated and, therefore, had a perfect repeatability (0°). Clinically relevant anatomical planes were observed with CS2. In conclusion, this study presents an automated method for defining a global coordinate system in the foot according to predefined requirements for the planning of forefoot corrections.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":"2 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomechanics3040042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Forefoot osteotomies to improve the alignment are difficult procedures and can lead to a variety of complications. Preoperative planning in three dimensions might assist in the successful management of forefoot deformities. The purpose of this study was to develop a global coordinate system in the foot for the planning of forefoot corrections. Two strategies (CS1 and CS2) were developed for defining a global coordinate system that meets the criteria of being well-defined, robust, highly repeatable, clinically relevant, compatible with foot CT scans, independent of the ankle joint angle, and does not include bones in the forefoot. The absolute angle of rotation was used to quantify repeatability. The anatomical planes of the coordinate systems were visually inspected by an orthopedic surgeon to evaluate the clinical relevancy. The repeatability of CS1 ranged from 0.48° to 5.86°. The definition of CS2 was fully automated and, therefore, had a perfect repeatability (0°). Clinically relevant anatomical planes were observed with CS2. In conclusion, this study presents an automated method for defining a global coordinate system in the foot according to predefined requirements for the planning of forefoot corrections.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前足矫正手术计划中足部全局坐标系的定义
前足截骨术是一项困难的手术,可导致各种并发症。术前三维规划可能有助于成功处理前足畸形。本研究的目的是开发一个全局坐标系在足部的规划前足纠正。制定了两种策略(CS1和CS2)来定义一个全局坐标系统,该系统满足定义明确、稳健、高度可重复、临床相关、与足部CT扫描兼容、独立于踝关节角度、不包括前足骨骼的标准。用绝对旋转角度来量化重复性。由骨科医生目视检查坐标系的解剖平面以评估其临床相关性。CS1的重复性为0.48°~ 5.86°。CS2的定义是完全自动化的,因此具有完美的可重复性(0°)。应用CS2观察临床相关解剖平面。综上所述,本研究提出了一种根据预先定义的要求来规划前足校正的自动定义足部全局坐标系的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Effects of Aging on Patellofemoral Joint Stress during Stair Negotiation on Challenging Surfaces. Definition of a Global Coordinate System in the Foot for the Surgical Planning of Forefoot Corrections Postural Control Behavior in a Virtual Moving Room Paradigm Patient-Specific 3D Virtual Surgical Planning Using Simulated Fluoroscopic Images to Improve Sacroiliac Joint Fusion Optimization of a Cost-Constrained, Hydraulic Knee Prosthesis Using a Kinematic Analysis Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1