Influence of Composition of Layer Layout on Bending and Compression Strength Performance of Larix Cross-Laminated Timber (CLT)

Danqiao Song, Keon-Ho Kim
{"title":"Influence of Composition of Layer Layout on Bending and Compression\n Strength Performance of Larix Cross-Laminated Timber (CLT)","authors":"Danqiao Song, Keon-Ho Kim","doi":"10.5658/wood.2023.51.4.239","DOIUrl":null,"url":null,"abstract":"In this study, bending and compression strength tests were performed to investigate effect of composition of layer layout of Larix cross-laminated timber (CLT) on mechanical properties. The Larix CLT consists of five laminae, and specimens were classified into four types according to grade and composition of layer. The layer’s layout were composited as follows 1) cross-laminating layers in major and minor direction (Type A), and 2) cross-laminating external layer in major direction and internal layer applied grade of layer in minor direction (Type B). E12 and E16 were used as grades of lamina for major direction layer of Type A and external layer of Type B according to KS F 3020. In results of the bending test of CLT using same grade layer according to layer composition, the modulus of elasticity (MOE) of Type B was higher than Type A. In case of prediction of bending MOE of Larix CLT, the experimental MOE was higher than 1.00 to 1.09 times for Shear analogy method and 1.14 to 1.25 times for Gamma method. Therefore, it is recommended to predict the bending MOE for Larix CLT by shear analogy method. Compression strength of CLT in accordance with layer composition was measured to be 2% and 9% higher for Type A using E12 and E16 layers than Type B, respectively. In failure mode of Type A, progress direction of failure generated under compression load was confirmed to transfer from major layer to minor layer by rolling shear or bonding line failure due to the middle lamina in major direction.","PeriodicalId":17357,"journal":{"name":"Journal of the Korean wood science and technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean wood science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5658/wood.2023.51.4.239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, bending and compression strength tests were performed to investigate effect of composition of layer layout of Larix cross-laminated timber (CLT) on mechanical properties. The Larix CLT consists of five laminae, and specimens were classified into four types according to grade and composition of layer. The layer’s layout were composited as follows 1) cross-laminating layers in major and minor direction (Type A), and 2) cross-laminating external layer in major direction and internal layer applied grade of layer in minor direction (Type B). E12 and E16 were used as grades of lamina for major direction layer of Type A and external layer of Type B according to KS F 3020. In results of the bending test of CLT using same grade layer according to layer composition, the modulus of elasticity (MOE) of Type B was higher than Type A. In case of prediction of bending MOE of Larix CLT, the experimental MOE was higher than 1.00 to 1.09 times for Shear analogy method and 1.14 to 1.25 times for Gamma method. Therefore, it is recommended to predict the bending MOE for Larix CLT by shear analogy method. Compression strength of CLT in accordance with layer composition was measured to be 2% and 9% higher for Type A using E12 and E16 layers than Type B, respectively. In failure mode of Type A, progress direction of failure generated under compression load was confirmed to transfer from major layer to minor layer by rolling shear or bonding line failure due to the middle lamina in major direction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层构型组成对落叶松交叉层合材抗弯抗压性能的影响
通过弯曲和抗压强度试验,研究了落叶松交叉层合材(CLT)的层位组成对其力学性能的影响。落叶松CLT由5层组成,根据层的等级和组成将标本分为4种类型。层的布置复合如下:1)主、副方向交叉层(A型),2)主方向交叉层外层,内层应用副方向层级(B型)。A型主方向层和B型外层的层级采用E12和E16,按照KS F 3020的要求。在按层组成采用同一等级层的CLT弯曲试验结果中,B型的弹性模量(MOE)高于a型。在预测落叶松CLT弯曲MOE时,剪切类比法的实验MOE高于1.00 ~ 1.09倍,Gamma法的实验MOE高于1.14 ~ 1.25倍。因此,建议采用剪切类比法预测落叶松CLT的弯曲模量。采用E12层和E16层的A型CLT抗压强度分别比B型高2%和9%。在A型破坏模式中,在压缩载荷作用下产生的破坏进展方向被确认为主要方向上由中间层引起的滚动剪切或粘结线破坏,从主要层向次要层转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Korean wood science and technology
Journal of the Korean wood science and technology Materials Science-Materials Science (miscellaneous)
CiteScore
5.20
自引率
0.00%
发文量
32
期刊介绍: The Journal of the Korean Wood Science and Technology (JKWST) launched in 1973 as an official publication of the Korean Society of Wood Science and Technology has been served as a core of knowledges on wood science and technology. The Journal acts as a medium for the exchange of research in the area of science and technology related to wood, and publishes results on the biology, chemistry, physics and technology of wood and wood-based products. Research results about applied sciences of wood-based materials are also welcome. The Journal is published bimonthly, and printing six issues per year. Supplemental or special issues are published occasionally. The abbreviated and official title of the journal is ''J. Korean Wood Sci. Technol.''. All submitted manuscripts written in Korean or English are peer-reviewed by more than two reviewers. The title, abstract, acknowledgement, references, and captions of figures and tables should be provided in English for all submitted manuscripts.
期刊最新文献
A Study on the Positioning Strategy of Wood Cultural Experience Center Determination of the Boundary between Juvenile–Mature Wood of Diospyros kaki and Their Wood Anatomical Variations Conversion Characteristics of Chemical Constituents in Liriodendron tulipifera and Their Influences on Biomass Recalcitrance during Acid-Catalyzed Organosolv Pretreatment Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties Coicis Semen Reduces Staphylococcus aureus Persister Cell Formation by Increasing Membrane Permeability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1