Clustering Analysis with Embedding Vectors: An Application to Real Estate Market Delineation

Q3 Engineering Advances in Technology Innovation Pub Date : 2021-11-30 DOI:10.46604/aiti.2021.8492
C. Lee
{"title":"Clustering Analysis with Embedding Vectors: An Application to Real Estate Market Delineation","authors":"C. Lee","doi":"10.46604/aiti.2021.8492","DOIUrl":null,"url":null,"abstract":"Although clustering analysis is a popular tool in unsupervised learning, it is inefficient for the datasets dominated by categorical variables, e.g., real estate datasets. To apply clustering analysis to real estate datasets, this study proposes an entity embedding approach that transforms categorical variables into vector representations. Three variants of a clustering algorithm, i.e., the clustering based on the traditional Euclidean distance, the Gower distance, and the embedding vectors, are applied to the land sales records to delineate the real estate market in Gwacheon-si, Gyeonggi province, South Korea. Then, the relevance of the resultant submarkets is evaluated using the root mean squared errors (RMSE) obtained from a hedonic pricing model. The results show that the RMSE in the embedding vector-based algorithm decreases substantially from 0.076-0.077 to 0.069. This study shows that the clustering algorithm empowered by embedding vectors outperforms the conventional algorithms, thereby enhancing the relevance of the delineated submarkets.","PeriodicalId":52314,"journal":{"name":"Advances in Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/aiti.2021.8492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Although clustering analysis is a popular tool in unsupervised learning, it is inefficient for the datasets dominated by categorical variables, e.g., real estate datasets. To apply clustering analysis to real estate datasets, this study proposes an entity embedding approach that transforms categorical variables into vector representations. Three variants of a clustering algorithm, i.e., the clustering based on the traditional Euclidean distance, the Gower distance, and the embedding vectors, are applied to the land sales records to delineate the real estate market in Gwacheon-si, Gyeonggi province, South Korea. Then, the relevance of the resultant submarkets is evaluated using the root mean squared errors (RMSE) obtained from a hedonic pricing model. The results show that the RMSE in the embedding vector-based algorithm decreases substantially from 0.076-0.077 to 0.069. This study shows that the clustering algorithm empowered by embedding vectors outperforms the conventional algorithms, thereby enhancing the relevance of the delineated submarkets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入向量聚类分析在房地产市场划分中的应用
尽管聚类分析是无监督学习中的一种流行工具,但对于由分类变量主导的数据集,例如房地产数据集,它是低效的。为了将聚类分析应用于房地产数据集,本研究提出了一种将分类变量转换为向量表示的实体嵌入方法。将聚类算法的三种变体,即基于传统欧几里得距离的聚类、高尔距离和嵌入向量,应用于土地销售记录,以描绘韩国京畿道光川市的房地产市场。然后,使用从特征定价模型获得的均方根误差(RMSE)来评估所得子市场的相关性。结果表明,基于嵌入向量的算法中的RMSE从0.076-0.077显著降低到0.069。研究表明,嵌入向量赋能的聚类算法优于传统算法,从而增强了所划分的子市场的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Technology Innovation
Advances in Technology Innovation Energy-Energy Engineering and Power Technology
CiteScore
1.90
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Synthesis and Characterization of Phase Change Microcapsules Containing Nano-Graphite Challenges and Solutions to Criminal Liability for the Actions of Robots and AI Selection of Elevation Models for Flood Inundation Map Generation in Small Urban Stream: Case Study of Anyang Stream Efficient Object Detection and Intelligent Information Display Using YOLOv4-Tiny The Prediction of Low-Rise Building Construction Cost Estimation Using Extreme Learning Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1