{"title":"Achieving dynamic privacy measurement and protection based on reinforcement learning for mobile edge crowdsensing of IoT","authors":"Renwan Bi , Mingfeng Zhao , Zuobin Ying , Youliang Tian , Jinbo Xiong","doi":"10.1016/j.dcan.2022.07.013","DOIUrl":null,"url":null,"abstract":"<div><p>With the maturity and development of 5G field, Mobile Edge CrowdSensing (MECS), as an intelligent data collection paradigm, provides a broad prospect for various applications in IoT. However, sensing users as data uploaders lack a balance between data benefits and privacy threats, leading to conservative data uploads and low revenue or excessive uploads and privacy breaches. To solve this problem, a Dynamic Privacy Measurement and Protection (DPMP) framework is proposed based on differential privacy and reinforcement learning. Firstly, a DPM model is designed to quantify the amount of data privacy, and a calculation method for personalized privacy threshold of different users is also designed. Furthermore, a Dynamic Private sensing data Selection (DPS) algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds. Finally, theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection, in particular, the proposed DPMP framework has 63% and 23% higher training efficiency and data benefits, respectively, compared to the Monte Carlo algorithm.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864822001614/pdfft?md5=71ebc1f5a95abb30e85e562e9415d772&pid=1-s2.0-S2352864822001614-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822001614","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With the maturity and development of 5G field, Mobile Edge CrowdSensing (MECS), as an intelligent data collection paradigm, provides a broad prospect for various applications in IoT. However, sensing users as data uploaders lack a balance between data benefits and privacy threats, leading to conservative data uploads and low revenue or excessive uploads and privacy breaches. To solve this problem, a Dynamic Privacy Measurement and Protection (DPMP) framework is proposed based on differential privacy and reinforcement learning. Firstly, a DPM model is designed to quantify the amount of data privacy, and a calculation method for personalized privacy threshold of different users is also designed. Furthermore, a Dynamic Private sensing data Selection (DPS) algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds. Finally, theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection, in particular, the proposed DPMP framework has 63% and 23% higher training efficiency and data benefits, respectively, compared to the Monte Carlo algorithm.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.