A new approach based on the combination of complex impedance and conductivity to investigate the interaction mechanisms of raw polysaccharides in aqueous solutions

Soumia Zaim , Mohamed Monkade , Halima Rchid , Alina Violeta Ursu , Christophe Vial , Philippe Michaud , Meryem Bensemlali , Abdellatif Aarfane , Rachid Nmila , Reddad El Moznine
{"title":"A new approach based on the combination of complex impedance and conductivity to investigate the interaction mechanisms of raw polysaccharides in aqueous solutions","authors":"Soumia Zaim ,&nbsp;Mohamed Monkade ,&nbsp;Halima Rchid ,&nbsp;Alina Violeta Ursu ,&nbsp;Christophe Vial ,&nbsp;Philippe Michaud ,&nbsp;Meryem Bensemlali ,&nbsp;Abdellatif Aarfane ,&nbsp;Rachid Nmila ,&nbsp;Reddad El Moznine","doi":"10.1016/j.mset.2023.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>The molecule-water and molecule–molecule interactions are the main keys to understanding the behavior of polysaccharides in an aqueous solution. In this work, electrical impedance spectroscopy is used to investigate raw polysaccharides' dielectric and electrical properties. Impedance data were carried out for different concentrations in the frequency range [10<sup>-2</sup>–10<sup>6</sup>Hz] and then analyzed in Nyquist and bode representation, revealing one clear maximum due to the electrode polarization. Therefore, the complex conductivity is analyzed and makes the other relaxation processes very clear.</p><p>Moreover, an appropriate equivalent circuit was developed, showing good agreement with the experimental data. The extrapolation and deconvolution approaches in the frequency range [10<sup>-3</sup>–10<sup>7</sup>Hz] were performed to confirm the presence of the three relaxation processes and the validity of the equivalent circuit. The first was attributed to the electrode polarization, and the other processes were attributed to the molecules-water and molecule-counterion interactions. Finally, a clear transition at 5% (w/v) is shown in the evolutions of the conductivity, suggesting the transition from the dilute to the semi-dilute domain.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 343-350"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299123000125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

The molecule-water and molecule–molecule interactions are the main keys to understanding the behavior of polysaccharides in an aqueous solution. In this work, electrical impedance spectroscopy is used to investigate raw polysaccharides' dielectric and electrical properties. Impedance data were carried out for different concentrations in the frequency range [10-2–106Hz] and then analyzed in Nyquist and bode representation, revealing one clear maximum due to the electrode polarization. Therefore, the complex conductivity is analyzed and makes the other relaxation processes very clear.

Moreover, an appropriate equivalent circuit was developed, showing good agreement with the experimental data. The extrapolation and deconvolution approaches in the frequency range [10-3–107Hz] were performed to confirm the presence of the three relaxation processes and the validity of the equivalent circuit. The first was attributed to the electrode polarization, and the other processes were attributed to the molecules-water and molecule-counterion interactions. Finally, a clear transition at 5% (w/v) is shown in the evolutions of the conductivity, suggesting the transition from the dilute to the semi-dilute domain.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于复合阻抗和电导率相结合的新方法研究了原料多糖在水溶液中的相互作用机制
分子-水和分子-分子相互作用是了解多糖在水溶液中行为的关键。在这项工作中,电阻抗谱用于研究原料多糖的介电和电学性质。在频率范围[10-2-106Hz]中对不同浓度的阻抗数据进行了分析,然后在Nyquist和bode表示中进行了分析,揭示了由于电极极化导致的一个明显的最大值。因此,对复合电导率进行了分析,并使其他弛豫过程非常清楚。设计了相应的等效电路,与实验数据吻合较好。在[10-3-107Hz]频率范围内采用外推法和反褶积法证实了三种松弛过程的存在和等效电路的有效性。第一个过程归因于电极极化,其他过程归因于分子-水和分子-反离子相互作用。最后,在5% (w/v)时,电导率的演变显示出一个明显的转变,表明从稀域到半稀域的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science for Energy Technologies
Materials Science for Energy Technologies Materials Science-Materials Science (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
41
审稿时长
39 days
期刊最新文献
Li-S-B Glass-Ceramics: A Novel electrode materials for energy storage technology Selective hydrogenation of 1,3-butadiene to butenes on ceria-supported Pd, Ni and PdNi catalysts: Combined experimental and DFT outlook Compositing LaSrMnO3 perovskite and graphene oxide nanoribbons for highly stable asymmetric electrochemical supercapacitors Facile synthesis and electrochemical performance of bacterial cellulose/reduced graphene oxide/NiCo-layered double hydroxide composite film for self-standing supercapacitor electrode A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1