{"title":"Magnetic field recovery technique based on distance weighting multipole expansion method","authors":"Binbin Liu, Zhen Yang, Li-e Qiang, Xiaodong Peng, Xiaoshan Ma, Peng Xu, Ziren Luo, Wenlin Tang, Yuzhu Zhang, Chen Gao","doi":"10.1209/0295-5075/acf51f","DOIUrl":null,"url":null,"abstract":"A space-borne gravitational wave detector requires the test mass (TM) to be in an ultra-low disturbance state. However, magnetic field fluctuations will disturb the TM and produce acceleration noise. To assess the influence of the magnetic field on the TM, it is necessary to monitor and reconstruct the magnetic field near the TM in real time. In this paper, a distance weighting multipole expansion (DWME) method was proposed, and its magnetic field reconstruction accuracy was analyzed. The results demonstrated that the proposed DWME method significantly improved the reconstruction precision compared to traditional methods. It reduced the average reconstruction error of the sensitive axial magnetic field from 1.2% to 0.8% and the maximum error from 16% to 8%. In the in-orbit situation, the DWME method also outperforms traditional methods.","PeriodicalId":11738,"journal":{"name":"EPL","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/acf51f","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A space-borne gravitational wave detector requires the test mass (TM) to be in an ultra-low disturbance state. However, magnetic field fluctuations will disturb the TM and produce acceleration noise. To assess the influence of the magnetic field on the TM, it is necessary to monitor and reconstruct the magnetic field near the TM in real time. In this paper, a distance weighting multipole expansion (DWME) method was proposed, and its magnetic field reconstruction accuracy was analyzed. The results demonstrated that the proposed DWME method significantly improved the reconstruction precision compared to traditional methods. It reduced the average reconstruction error of the sensitive axial magnetic field from 1.2% to 0.8% and the maximum error from 16% to 8%. In the in-orbit situation, the DWME method also outperforms traditional methods.
期刊介绍:
General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology.
Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate).
EPL also publishes Comments on Letters previously published in the Journal.