Kaisa Tornberg, Hannu Välimäki, Silmu Valaskivi, Antti-Juhana Mäki, Matias Jokinen, Joose Kreutzer, Pasi Kallio
{"title":"Compartmentalized organ-on-a-chip structure for spatiotemporal control of oxygen microenvironments","authors":"Kaisa Tornberg, Hannu Välimäki, Silmu Valaskivi, Antti-Juhana Mäki, Matias Jokinen, Joose Kreutzer, Pasi Kallio","doi":"10.1007/s10544-022-00634-y","DOIUrl":null,"url":null,"abstract":"<div><p>Hypoxia is a condition where tissue oxygen levels fall below normal levels. In locally induced hypoxia due to blood vessel blockage, oxygen delivery becomes compromised. The site where blood flow is diminished the most forms a zero-oxygen core, and different oxygenation zones form around this core with varying oxygen concentrations. Naturally, these differing oxygen microenvironments drive cells to respond according to their oxygenation status. To study these cellular processes in laboratory settings, the cellular gas microenvironments should be controlled rapidly and precisely. In this study, we propose an organ-on-a-chip device that provides control over the oxygen environments in three separate compartments as well as the possibility of rapidly changing the corresponding oxygen concentrations. The proposed device includes a microfluidic channel structure with three separate arrays of narrow microchannels that guide gas mixtures with desired oxygen concentrations to diffuse through a thin gas-permeable membrane into cell culture areas. The proposed microfluidic channel structure is characterized using a 2D ratiometric oxygen imaging system, and the measurements confirm that the oxygen concentrations at the cell culture surface can be modulated in a few minutes. The structure is capable of creating hypoxic oxygen tension, and distinct oxygen environments can be generated simultaneously in the three compartments. By combining the microfluidic channel structure with an open-well coculture device, multicellular cultures can be established together with compartmentalized oxygen environment modulation. We demonstrate that the proposed compartmentalized organ-on-a-chip structure is suitable for cell culture.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-022-00634-y.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-022-00634-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Hypoxia is a condition where tissue oxygen levels fall below normal levels. In locally induced hypoxia due to blood vessel blockage, oxygen delivery becomes compromised. The site where blood flow is diminished the most forms a zero-oxygen core, and different oxygenation zones form around this core with varying oxygen concentrations. Naturally, these differing oxygen microenvironments drive cells to respond according to their oxygenation status. To study these cellular processes in laboratory settings, the cellular gas microenvironments should be controlled rapidly and precisely. In this study, we propose an organ-on-a-chip device that provides control over the oxygen environments in three separate compartments as well as the possibility of rapidly changing the corresponding oxygen concentrations. The proposed device includes a microfluidic channel structure with three separate arrays of narrow microchannels that guide gas mixtures with desired oxygen concentrations to diffuse through a thin gas-permeable membrane into cell culture areas. The proposed microfluidic channel structure is characterized using a 2D ratiometric oxygen imaging system, and the measurements confirm that the oxygen concentrations at the cell culture surface can be modulated in a few minutes. The structure is capable of creating hypoxic oxygen tension, and distinct oxygen environments can be generated simultaneously in the three compartments. By combining the microfluidic channel structure with an open-well coculture device, multicellular cultures can be established together with compartmentalized oxygen environment modulation. We demonstrate that the proposed compartmentalized organ-on-a-chip structure is suitable for cell culture.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.