Amin Houari, K. Madani, Salah Amroune, L. Zouambi, M. Elajrami
{"title":"Numerical Study of the Mechanical Behaviour and Damage of FGM Bent Pipes Under Internal Pressure and Combined Bending Moment","authors":"Amin Houari, K. Madani, Salah Amroune, L. Zouambi, M. Elajrami","doi":"10.2478/ama-2023-0053","DOIUrl":null,"url":null,"abstract":"Abstract The main objective of this work is the numerical prediction of the mechanical behaviour up to the damage of the bends of the functionally graded material (FGM) type ceramic/metal pipes. Firstly, the effective elastoplastic proper-ties of bent FGM pipes were determined using the homogenisation law by the Mori–Tanaka models for the elastic part and TTO (Tamura-Tomota-Ozawa) for the plastic part based on a rule of mixtures per function in the form of a power law. Our work also aims at the use of a meshing method (UMM) to predict the behaviour of the FGM by finite element in the mesh of the model. The analysis was performed using the UMM technique for different loading cases and volume fraction distribution. Two stages are necessary for the analysis of the damage: the first is the model of initiation of the damage established by the criterion of maximum deformation named MAXPE and the second is criterion of the energy of the rupture according to the theory Hillerborg used to determine damage evolution. Both stages involve a 3D finite element method analysis. However, for damage, the XFEM technique was used in our UMM method to predict crack initiation and propagation in FGM pipe bends. The results of the numerical analysis concerning the mechanical behavior showed, that if the nature of the bent pipes is in FGM, a good reduction of the various stresses compared to those where the nature of the pipe is metallic material. The results were presented in the form of a force–displacement curve. The validation of the proposed numerical methodology is highlighted by comparisons of current results with results from the literature, which showed good agreement. The analysis took into account the effect of the main parameters in a bent FGM pipe under internal pressure and bending moment on the variation of the force–strain curves.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2023-0053","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The main objective of this work is the numerical prediction of the mechanical behaviour up to the damage of the bends of the functionally graded material (FGM) type ceramic/metal pipes. Firstly, the effective elastoplastic proper-ties of bent FGM pipes were determined using the homogenisation law by the Mori–Tanaka models for the elastic part and TTO (Tamura-Tomota-Ozawa) for the plastic part based on a rule of mixtures per function in the form of a power law. Our work also aims at the use of a meshing method (UMM) to predict the behaviour of the FGM by finite element in the mesh of the model. The analysis was performed using the UMM technique for different loading cases and volume fraction distribution. Two stages are necessary for the analysis of the damage: the first is the model of initiation of the damage established by the criterion of maximum deformation named MAXPE and the second is criterion of the energy of the rupture according to the theory Hillerborg used to determine damage evolution. Both stages involve a 3D finite element method analysis. However, for damage, the XFEM technique was used in our UMM method to predict crack initiation and propagation in FGM pipe bends. The results of the numerical analysis concerning the mechanical behavior showed, that if the nature of the bent pipes is in FGM, a good reduction of the various stresses compared to those where the nature of the pipe is metallic material. The results were presented in the form of a force–displacement curve. The validation of the proposed numerical methodology is highlighted by comparisons of current results with results from the literature, which showed good agreement. The analysis took into account the effect of the main parameters in a bent FGM pipe under internal pressure and bending moment on the variation of the force–strain curves.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.