{"title":"Natural convection of fluid with variable viscosity and viscous dissipation from a heated vertical wavy surface in presence of magnetic field","authors":"N. Parveen, M. Alim","doi":"10.3329/JNAME.V17I2.45674","DOIUrl":null,"url":null,"abstract":"ABSTRACT \n \nThe present numerical work describes the effect of the temperature dependent variable viscosity and viscous dissipation on natural convection heat transfer boundary layer flow of a viscous incompressible electrically conducting fluid along a vertical wavy surface in presence of a transverse magnetic field. The wavy surface is maintained at uniform wall temperature that is higher than that of the ambient. A simple coordinate transformation is employed to transform the wavy surface into a flat plate. A marching finite difference scheme is used for present analysis. The numerical results, including the developments of the skin friction coefficients, the local Nusselt number, the streamlines as well as the isotherms are presented and discussed in detail. The results of this investigation illustrated that the skin friction coefficient increase with an increase of the variable viscosity and viscous dissipation parameter, while the local Nusselt number at the heated surface decrease with increasing values of variable viscosity, intensity of magnetic field and viscous dissipation parameter.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V17I2.45674","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
ABSTRACT
The present numerical work describes the effect of the temperature dependent variable viscosity and viscous dissipation on natural convection heat transfer boundary layer flow of a viscous incompressible electrically conducting fluid along a vertical wavy surface in presence of a transverse magnetic field. The wavy surface is maintained at uniform wall temperature that is higher than that of the ambient. A simple coordinate transformation is employed to transform the wavy surface into a flat plate. A marching finite difference scheme is used for present analysis. The numerical results, including the developments of the skin friction coefficients, the local Nusselt number, the streamlines as well as the isotherms are presented and discussed in detail. The results of this investigation illustrated that the skin friction coefficient increase with an increase of the variable viscosity and viscous dissipation parameter, while the local Nusselt number at the heated surface decrease with increasing values of variable viscosity, intensity of magnetic field and viscous dissipation parameter.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.