RESEARCH ON THE MOTION RESPONSE OF AQUACULTURE SHIP AND TANK SLOSHING UNDER ROLLING RESONANCE

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE Brodogradnja Pub Date : 2022-04-01 DOI:10.21278/brod73201
L. Hui, Sun Zhiyong, Han Bingbing, Shao Yuhang, Deng Baoli
{"title":"RESEARCH ON THE MOTION RESPONSE OF AQUACULTURE SHIP AND TANK SLOSHING UNDER ROLLING RESONANCE","authors":"L. Hui, Sun Zhiyong, Han Bingbing, Shao Yuhang, Deng Baoli","doi":"10.21278/brod73201","DOIUrl":null,"url":null,"abstract":"The double-row and double-chamfered aquaculture tank is a special tank structure of the aquaculture ship. The tank sloshing of this structure is coupled with the hull motion, which has an important impact on the safety of the hull motion. In the present study, research on the tank sloshing and hull motion response of aquaculture ships was conducted based on the model seakeeping and tank sloshing tests in regular waves. The test results were compared with the numerical simulation results of solid loading without sloshing. The results showed that the numerical simulation of the pitch motion was consistent with the amplitude-frequency response curve of the experimental results. Under certain transverse wave conditions, a large discrepancy existed between the amplitude-frequency response curve of the heave motion by the numerical simulation and the test results, and the roll motion differed most from the experimental result. Severe roll resonance occurred when the wave length-ship length ratio was 0.6. The roll motion amplitude was increased by 183.2%. Therefore, compared with aquaculture ships without sloshing, the sloshing of the tank has little effect on the pitch but has a great impact on the roll and heave motions, with the most significant effect on the roll motion.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod73201","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 4

Abstract

The double-row and double-chamfered aquaculture tank is a special tank structure of the aquaculture ship. The tank sloshing of this structure is coupled with the hull motion, which has an important impact on the safety of the hull motion. In the present study, research on the tank sloshing and hull motion response of aquaculture ships was conducted based on the model seakeeping and tank sloshing tests in regular waves. The test results were compared with the numerical simulation results of solid loading without sloshing. The results showed that the numerical simulation of the pitch motion was consistent with the amplitude-frequency response curve of the experimental results. Under certain transverse wave conditions, a large discrepancy existed between the amplitude-frequency response curve of the heave motion by the numerical simulation and the test results, and the roll motion differed most from the experimental result. Severe roll resonance occurred when the wave length-ship length ratio was 0.6. The roll motion amplitude was increased by 183.2%. Therefore, compared with aquaculture ships without sloshing, the sloshing of the tank has little effect on the pitch but has a great impact on the roll and heave motions, with the most significant effect on the roll motion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
滚动共振作用下养殖船和养殖箱晃动的运动响应研究
双排双倒角养殖水箱是养殖船的一种特殊水箱结构。这种结构的储罐晃动与船体运动耦合,对船体运动的安全性有重要影响。本研究基于模型耐浪性和槽晃动试验,对水产养殖船舶槽晃动和船体运动响应进行了研究。将试验结果与无晃动固体载荷的数值模拟结果进行了比较。结果表明,数值模拟的俯仰运动与实验结果的幅频响应曲线吻合。在一定横波条件下,数值模拟得到的升沉运动幅频响应曲线与试验结果差异较大,其中横摇运动与试验结果差异最大。当波长船长比为0.6时,横摇共振严重。横摇运动幅度增加了183.2%。因此,与无晃动的水产养殖船舶相比,水箱晃动对纵摇影响较小,但对横摇和升沉运动影响较大,其中对横摇运动的影响最为显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
期刊最新文献
Probabilistic evaluation of dynamic positioning operability with a Quasi-Monte Carlo approach Influence of scale effect on flow field offset for ships in confined waters On the propeller wake evolution using large eddy simulations and physics-informed space-time decomposition Small Modular AUV Based on 3D Printing Technology: Design, Implementation and Experimental Validation Analysis of damage to ship personnel in different seated postures by near-field underwater explosions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1