Comment: inference after covariate-adaptive randomisation: aspects of methodology and theory

IF 0.7 Q3 STATISTICS & PROBABILITY Statistical Theory and Related Fields Pub Date : 2021-03-22 DOI:10.1080/24754269.2021.1905377
T. Ye, Yanyao Yi
{"title":"Comment: inference after covariate-adaptive randomisation: aspects of methodology and theory","authors":"T. Ye, Yanyao Yi","doi":"10.1080/24754269.2021.1905377","DOIUrl":null,"url":null,"abstract":"We first want to commend (Shao, 2021) for a timely paper that reviews the methodological and theoretical advances in statistical inference after covariateadaptive randomisation in the last decade. The paper clearly presents the important considerations and pragmatic recommendations when analysing data obtained from covariate-adaptive randomisation, which provides principled guidelines for the practice. The aim of our remaining comments is to extend the discussion on the invariance property in Shao (2021). That is, the asymptotic distribution of an estimator remains the same under different covariate-adaptive randomisation schemes. For ease of reading, we follow the notation in Shao (2021) whenever possible and focus on the case of two treatment arms (i.e., k = 2). The ideas can be extended to the case of multiple treatment arms. For continuous or binary outcomes, Shao (2021) describes three post-stratified estimators for the population mean difference θ0 = E(Y(2) − Y(1)):","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"5 1","pages":"194 - 195"},"PeriodicalIF":0.7000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24754269.2021.1905377","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1905377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We first want to commend (Shao, 2021) for a timely paper that reviews the methodological and theoretical advances in statistical inference after covariateadaptive randomisation in the last decade. The paper clearly presents the important considerations and pragmatic recommendations when analysing data obtained from covariate-adaptive randomisation, which provides principled guidelines for the practice. The aim of our remaining comments is to extend the discussion on the invariance property in Shao (2021). That is, the asymptotic distribution of an estimator remains the same under different covariate-adaptive randomisation schemes. For ease of reading, we follow the notation in Shao (2021) whenever possible and focus on the case of two treatment arms (i.e., k = 2). The ideas can be extended to the case of multiple treatment arms. For continuous or binary outcomes, Shao (2021) describes three post-stratified estimators for the population mean difference θ0 = E(Y(2) − Y(1)):
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评论:协变量自适应随机化后的推论:方法论和理论的各个方面
我们首先要赞扬(Shao,2021)的一篇及时的论文,该论文回顾了过去十年中协变量自适应随机化后统计推断的方法和理论进展。本文明确提出了分析协变量自适应随机化数据时的重要考虑因素和实用建议,为实践提供了原则指导。我们剩余评论的目的是扩展Shao(2021)中关于不变性的讨论。也就是说,在不同的协变量自适应随机化方案下,估计器的渐近分布保持不变。为了便于阅读,我们尽可能遵循Shao(2021)中的注释,并关注两个治疗臂的情况(即k=2)。这些想法可以扩展到多个治疗臂的情况。对于连续或二元结果,Shao(2021)描述了群体平均差θ0=E(Y(2)−Y(1))的三个后分层估计量:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
期刊最新文献
Multiply robust estimation for average treatment effect among treated Communication-efficient distributed statistical inference on zero-inflated Poisson models FragmGAN: generative adversarial nets for fragmentary data imputation and prediction Log-rank and stratified log-rank tests Autoregressive moving average model for matrix time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1