{"title":"Tone Mapping Beyond the Classical Receptive Field","authors":"Shaobing Gao, Min Tan, Zhen He, Yongjie Li","doi":"10.1109/TIP.2020.2970541","DOIUrl":null,"url":null,"abstract":"Some neurons in the primary visual cortex (V1) of human visual system (HVS) conduct dynamic center-surround computation, which is thought to contribute to compress the high dynamic range (HDR) scene and preserve the details. We simulate this dynamic receptive field (RF) property of V1 neurons to solve the so-called tone mapping (TM) task in this paper. The novelties of our method are as follows. (1) Cortical processing mechanisms of HVS are modeled to build a local TM operation based on two Gaussian functions whose kernels and weights adapt according to the center-surround contrast, thus reducing halo artifacts and effectively enhancing the local details of bright and dark parts of image. (2) Our method uses an adaptive filter that follows the contrast levels of the image, which is computationally very efficient. (3) The local fusion between the center and surround responses returned by a cortical processing flow and the global signals returned by a sub-cortical processing flow according to the local contrast forms a dynamic mechanism that selectively enhances the details. Extensive experiments show that the proposed method can efficiently render the HDR scenes with good contrast, clear details, and high structural fidelity. In addition, the proposed method can also obtain promising performance when applied to enhance the low-light images. Furthermore, by modeling these biological solutions, our technique is simple and robust considering that our results were obtained using the same parameters for all the datasets (e.g., HDR images or low-light images), that is, mimicking how HVS operates.","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":"4174-4187"},"PeriodicalIF":10.8000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TIP.2020.2970541","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2020.2970541","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
Some neurons in the primary visual cortex (V1) of human visual system (HVS) conduct dynamic center-surround computation, which is thought to contribute to compress the high dynamic range (HDR) scene and preserve the details. We simulate this dynamic receptive field (RF) property of V1 neurons to solve the so-called tone mapping (TM) task in this paper. The novelties of our method are as follows. (1) Cortical processing mechanisms of HVS are modeled to build a local TM operation based on two Gaussian functions whose kernels and weights adapt according to the center-surround contrast, thus reducing halo artifacts and effectively enhancing the local details of bright and dark parts of image. (2) Our method uses an adaptive filter that follows the contrast levels of the image, which is computationally very efficient. (3) The local fusion between the center and surround responses returned by a cortical processing flow and the global signals returned by a sub-cortical processing flow according to the local contrast forms a dynamic mechanism that selectively enhances the details. Extensive experiments show that the proposed method can efficiently render the HDR scenes with good contrast, clear details, and high structural fidelity. In addition, the proposed method can also obtain promising performance when applied to enhance the low-light images. Furthermore, by modeling these biological solutions, our technique is simple and robust considering that our results were obtained using the same parameters for all the datasets (e.g., HDR images or low-light images), that is, mimicking how HVS operates.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.