Nguyen Thi Thanh Thuy, Nguyen Ngoc Diep, Ngo Xuan Bach, Tu Minh Phuong
{"title":"Joint Reference and Relation Extraction from Legal Documents with Enhanced Decoder Input","authors":"Nguyen Thi Thanh Thuy, Nguyen Ngoc Diep, Ngo Xuan Bach, Tu Minh Phuong","doi":"10.2478/cait-2023-0014","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with an important task in legal text processing, namely reference and relation extraction from legal documents, which includes two subtasks: 1) reference extraction; 2) relation determination. Motivated by the fact that two subtasks are related and share common information, we propose a joint learning model that solves simultaneously both subtasks. Our model employs a Transformer-based encoder-decoder architecture with non-autoregressive decoding that allows relaxing the sequentiality of traditional seq2seq models and extracting references and relations in one inference step. We also propose a method to enrich the decoder input with learnable meaningful information and therefore, improve the model accuracy. Experimental results on a dataset consisting of 5031 legal documents in Vietnamese with 61,446 references show that our proposed model performs better results than several strong baselines and achieves an F1 score of 99.4% for the joint reference and relation extraction task.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2023-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper deals with an important task in legal text processing, namely reference and relation extraction from legal documents, which includes two subtasks: 1) reference extraction; 2) relation determination. Motivated by the fact that two subtasks are related and share common information, we propose a joint learning model that solves simultaneously both subtasks. Our model employs a Transformer-based encoder-decoder architecture with non-autoregressive decoding that allows relaxing the sequentiality of traditional seq2seq models and extracting references and relations in one inference step. We also propose a method to enrich the decoder input with learnable meaningful information and therefore, improve the model accuracy. Experimental results on a dataset consisting of 5031 legal documents in Vietnamese with 61,446 references show that our proposed model performs better results than several strong baselines and achieves an F1 score of 99.4% for the joint reference and relation extraction task.