Algorithm for Solution of Non-convex Optimization Problem Through Piece-wise Convex Transformation

IF 0.3 Q4 MATHEMATICS Matematika Pub Date : 2018-12-02 DOI:10.11113/MATEMATIKA.V34.N2.977
Lee Chang Kerk, Rohanin Ahmad
{"title":"Algorithm for Solution of Non-convex Optimization Problem Through Piece-wise Convex Transformation","authors":"Lee Chang Kerk, Rohanin Ahmad","doi":"10.11113/MATEMATIKA.V34.N2.977","DOIUrl":null,"url":null,"abstract":"Optimization is central to any problem involving decision making. Thearea of optimization has received enormous attention for over 30 years and it is still popular in research field to this day. In this paper, a global optimization method called Kerk and Rohanin’s Trusted Interval will be introduced. The method introduced is able to identify all local solutions by converting non-convex optimization problems into piece-wise convex optimization problems. A mechanism which only considers the convex part where minimizers existed on a function is applied. This mechanism allows the method to filter out concave parts and some unrelated parts automatically. The identified convex parts are called trusted intervals. The descent property and the globally convergent of the method was shown in this paper. 15 test problems have been used to show the ability of the algorithm proposed in locating global minimizer.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V34.N2.977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Optimization is central to any problem involving decision making. Thearea of optimization has received enormous attention for over 30 years and it is still popular in research field to this day. In this paper, a global optimization method called Kerk and Rohanin’s Trusted Interval will be introduced. The method introduced is able to identify all local solutions by converting non-convex optimization problems into piece-wise convex optimization problems. A mechanism which only considers the convex part where minimizers existed on a function is applied. This mechanism allows the method to filter out concave parts and some unrelated parts automatically. The identified convex parts are called trusted intervals. The descent property and the globally convergent of the method was shown in this paper. 15 test problems have been used to show the ability of the algorithm proposed in locating global minimizer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用分段凸变换求解非凸优化问题的算法
优化是任何涉及决策的问题的核心。30多年来,优化问题一直受到人们的极大关注,至今在研究领域仍很受欢迎。本文将介绍一种称为Kerk和Rohanin可信区间的全局优化方法。所介绍的方法能够通过将非凸优化问题转换为分段凸优化问题来识别所有的局部解。应用了一种只考虑函数上存在极小值的凸部分的机制。该机制允许该方法自动过滤掉凹形部分和一些不相关的部分。已识别的凸部分称为可信区间。本文给出了该方法的下降性质和全局收敛性。通过15个测试问题,验证了该算法在全局极小值定位中的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
An Almost Unbiased Regression Estimator: Theoretical Comparison and Numerical Comparison in Portland Cement Data Neutrosophic Bicubic Bezier Surface ApproximationModel for Uncertainty Data Using the ARIMA/SARIMA Model for Afghanistan's Drought Forecasting Based on Standardized Precipitation Index Heat Transfer Enhancement of Convective Casson Nanofluid Flow by CNTs over Exponentially Accelerated Plate Biclustering Models Under Collinearity in Simulated Biological Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1