Breno Augusto Sosa Rodrigues, Diego E. Tobar López, Yuly Samanta García Vivas, Josué Mauricio Flores Cocas, Noé Humberto Paiz Gutiérrez, Elsa Gabriela Zelaya Méndez
{"title":"Nitrous oxide flux from soil with Urochloa brizantha under nitrogen fertilization in Honduras","authors":"Breno Augusto Sosa Rodrigues, Diego E. Tobar López, Yuly Samanta García Vivas, Josué Mauricio Flores Cocas, Noé Humberto Paiz Gutiérrez, Elsa Gabriela Zelaya Méndez","doi":"10.15446/agron.colomb.v40n3.102963","DOIUrl":null,"url":null,"abstract":"The emission of nitrous oxide is considerable in livestock systems, influenced by nitrogen fertilization and edaphoclimatic conditions. The aim of the research was to measure the flux of nitrous oxide (N2O) from the soil under Urochloa brizantha with nitrogen fertilization. In the pastures, a randomized complete block design was established with four replicates and three treatments, consisting of 2 m2 plots with U. brizantha fertilized with urea, bokashi and without fertilizer application. The gas samples were collected over three months between the rainy and dry seasons using the static closed chamber methodology. The samples related to the soil and plants were taken at a depth of 15 cm under undisturbed conditions every month, to quantify: gravimetric moisture, ammonium, nitrate, total carbon, total nitrogen, carbon/nitrogen ratio, and plant dry matter (DM). The ANAVA registered a significant difference between treatments for N2O, with the application of urea promoting higher accumulated flows (0.37 mg N2O m-2 h-1), followed by bokashi (0.34 mg N2O m-2 h-1) and lastly by the control (0.27 mg N2O m-2 h-1). The daily emission of the gas fluctuated in the rainy season, when soil moisture promoted higher emission peaks compared to the dry season. The fractions of nitrogen, carbon and DM were not affected by the treatments. The use of urea and the anaerobic conditions of soil due to the rains generated higher N2O values, while the organic amendment, bokashi, was the best alternative for the greenhouse gas mitigation and soil conservation.","PeriodicalId":38464,"journal":{"name":"Agronomia Colombiana","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomia Colombiana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/agron.colomb.v40n3.102963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The emission of nitrous oxide is considerable in livestock systems, influenced by nitrogen fertilization and edaphoclimatic conditions. The aim of the research was to measure the flux of nitrous oxide (N2O) from the soil under Urochloa brizantha with nitrogen fertilization. In the pastures, a randomized complete block design was established with four replicates and three treatments, consisting of 2 m2 plots with U. brizantha fertilized with urea, bokashi and without fertilizer application. The gas samples were collected over three months between the rainy and dry seasons using the static closed chamber methodology. The samples related to the soil and plants were taken at a depth of 15 cm under undisturbed conditions every month, to quantify: gravimetric moisture, ammonium, nitrate, total carbon, total nitrogen, carbon/nitrogen ratio, and plant dry matter (DM). The ANAVA registered a significant difference between treatments for N2O, with the application of urea promoting higher accumulated flows (0.37 mg N2O m-2 h-1), followed by bokashi (0.34 mg N2O m-2 h-1) and lastly by the control (0.27 mg N2O m-2 h-1). The daily emission of the gas fluctuated in the rainy season, when soil moisture promoted higher emission peaks compared to the dry season. The fractions of nitrogen, carbon and DM were not affected by the treatments. The use of urea and the anaerobic conditions of soil due to the rains generated higher N2O values, while the organic amendment, bokashi, was the best alternative for the greenhouse gas mitigation and soil conservation.
Agronomia ColombianaAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
1.00
自引率
0.00%
发文量
9
审稿时长
25 weeks
期刊介绍:
Agronomia Colombiana journal it is intended to transfer research results in different areas of tropical agronomy. Original unpublished papers are therefore accepted in the following areas: physiology, crop nutrition and fertilization, genetics and plant breeding, entomology, phytopathology, integrated crop protection, agro ecology, weed science, environmental management, geomatics, biometry, soils, water and irrigation, agroclimatology and climate change, post-harvest and agricultural industrialization, food technology, rural and agricultural entrepreneurial development, agrarian economy, and agricultural marketing (Published: Quarterly).