Effect of Scan Strategy on Mechanical Properties of AlSi12 Lattice Fabricated by Selective Laser Melting

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Laser Micro Nanoengineering Pub Date : 2020-06-01 DOI:10.2961/jlmn.2020.01.2002
M. Sairaiji, H. Yoshizaki, H. Iwaoka, S. Hirosawa, S. Maruo
{"title":"Effect of Scan Strategy on Mechanical Properties of AlSi12 Lattice Fabricated by Selective Laser Melting","authors":"M. Sairaiji, H. Yoshizaki, H. Iwaoka, S. Hirosawa, S. Maruo","doi":"10.2961/jlmn.2020.01.2002","DOIUrl":null,"url":null,"abstract":"In this study, the influence of scan strategies, such as scan order and scan patterns, on compressive load capacity was investigated for the aluminum alloy AlSi12-made lattice structures fabricated by selective laser melting. The scan order of concentric scan patterns affected compressive load capacity. Better mechanical properties were obtained when the scan order was set from the outside. Setting the scan order from the inside caused coarsening of the grains at the center of the strut, thus worsening the mechanical properties due to the reduced area fraction of the finegrained regions. The mechanism of such grain coarsening was explained based on the heat transfer direction. Furthermore, the scan pattern also affected the size and orientation of the grains in the lower zone of the strut as well as its geometrical accuracy. A stripe pattern with a rotation of 67° from layer to layer decreased the geometrical accuracy but increased the hardness of the strut owing to the smaller size and random orientation of the grains in the lower strut zone.","PeriodicalId":54788,"journal":{"name":"Journal of Laser Micro Nanoengineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Micro Nanoengineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2961/jlmn.2020.01.2002","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, the influence of scan strategies, such as scan order and scan patterns, on compressive load capacity was investigated for the aluminum alloy AlSi12-made lattice structures fabricated by selective laser melting. The scan order of concentric scan patterns affected compressive load capacity. Better mechanical properties were obtained when the scan order was set from the outside. Setting the scan order from the inside caused coarsening of the grains at the center of the strut, thus worsening the mechanical properties due to the reduced area fraction of the finegrained regions. The mechanism of such grain coarsening was explained based on the heat transfer direction. Furthermore, the scan pattern also affected the size and orientation of the grains in the lower zone of the strut as well as its geometrical accuracy. A stripe pattern with a rotation of 67° from layer to layer decreased the geometrical accuracy but increased the hardness of the strut owing to the smaller size and random orientation of the grains in the lower strut zone.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扫描策略对选择性激光熔化AlSi12晶格力学性能的影响
在本研究中,研究了扫描顺序和扫描模式等扫描策略对铝合金AlSi12通过选择性激光熔化制备的晶格结构的压缩承载能力的影响。同心扫描图案的扫描顺序影响压缩载荷能力。当从外部设置扫描顺序时,获得了更好的机械性能。从内部设置扫描顺序会导致支柱中心的晶粒变粗,从而由于细粒区域的面积分数降低而使机械性能恶化。从传热方向解释了晶粒粗化的机理。此外,扫描图案还影响支柱下部区域中晶粒的尺寸和取向及其几何精度。从一层到另一层旋转67°的条纹图案降低了几何精度,但由于下部支柱区晶粒的较小尺寸和随机取向,增加了支柱的硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Laser Micro Nanoengineering
Journal of Laser Micro Nanoengineering 工程技术-材料科学:综合
CiteScore
1.90
自引率
9.10%
发文量
18
审稿时长
3 months
期刊介绍: Journal of Laser Micro/Nanoengineering, founded in 2005 by Japan Laser Processing Society (JLPS), is an international online journal for the rapid publication of experimental and theoretical investigations in laser-based technology for micro- and nano-engineering. Access to the full article is provided free of charge. JLMN publishes regular articles, technical communications, and invited papers about new results related to laser-based technology for micro and nano engineering. The articles oriented to dominantly technical or industrial developments containing interesting and useful information may be considered as technical communications.
期刊最新文献
Laser Cutting of Polymer Templates for Water-Droplet Induced Self-Folding of Cubes: Hinge Geometry Optimization Preparation of Manganese Phthalocyanine Nanoparticles by Laser Ablation in Liquid and Application to Bioimaging Improving the Processing Efficiency of Femtosecond Laser Sulfur Hyperdoping of Silicon by Diffractive Beam Shaping Rapid µm ITO Electrode Patterning by Laser-direct Writing Using a Modest Commercial Fibre Laser Scriber Laser Surface Texturing of Metals Using Dynamic Melt Expulsion by Application of Fast Modulated CW-Laser Radiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1