Luzhen Ge, Kunlin Zou, Hang Zhou, Xiaowei Yu, Yuzhi Tan, Chunlong Zhang, Wei Li
{"title":"Three dimensional apple tree organs classification and yield estimation algorithm based on multi-features fusion and support vector machine","authors":"Luzhen Ge, Kunlin Zou, Hang Zhou, Xiaowei Yu, Yuzhi Tan, Chunlong Zhang, Wei Li","doi":"10.1016/j.inpa.2021.04.011","DOIUrl":null,"url":null,"abstract":"<div><p>The automatic classification of apple tree organs is of great significance for automatic pruning of apple trees, automatic picking of apple fruits, and estimation of fruit yield. However, there are some problems of dense foliage, partial occlusion and clustering of apple fruits. All of the problems above would contribute to the difficulties of organs classification and yield estimation of the apple trees. In this paper a method based on Color and Shape Multi-features Fusion and Support Vector Machine (SVM) for 3D apple tree organs classification and yield estimation was proposed. The method was designed for dwarf and densely planted apple trees at the early and late maturity stages. 196-dimensional feature vectors composed with Red Green Blue (RGB), Hue Saturation Value (HSV), Curvatures, Fast Point Feature Histogram (FPFH), and Spin Image were extracted firstly. And then the SVM based on linear kernel function was trained, after that the trained SVM was used for apple tree organs classification. Then the position weighted smoothing algorithm was used for classified apple tree organs smoothing. Then the agglomerative hierarchical clustering algorithm was used to recognize single apple fruit for yield estimation. On the same training and test set the experimental results showed that the SVM based on linear kernel function outperformed the KNN algorithm and Ensemble algorithm. The Recall, Precision and F1 score of the proposed method for yield estimation were 93.75%, 96.15% and 94.93% respectively. In summary, to solve the problems of apple tree organs classification and yield estimation in natural apple orchard, a novelty method based on multi-features fusion and SVM was proposed and achieve good performance. Moreover, the proposed method could provide technical support for automatic apple picking, automatic pruning of fruit trees, and automatic information acquisition and management in orchards.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"9 3","pages":"Pages 431-442"},"PeriodicalIF":7.7000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.inpa.2021.04.011","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
The automatic classification of apple tree organs is of great significance for automatic pruning of apple trees, automatic picking of apple fruits, and estimation of fruit yield. However, there are some problems of dense foliage, partial occlusion and clustering of apple fruits. All of the problems above would contribute to the difficulties of organs classification and yield estimation of the apple trees. In this paper a method based on Color and Shape Multi-features Fusion and Support Vector Machine (SVM) for 3D apple tree organs classification and yield estimation was proposed. The method was designed for dwarf and densely planted apple trees at the early and late maturity stages. 196-dimensional feature vectors composed with Red Green Blue (RGB), Hue Saturation Value (HSV), Curvatures, Fast Point Feature Histogram (FPFH), and Spin Image were extracted firstly. And then the SVM based on linear kernel function was trained, after that the trained SVM was used for apple tree organs classification. Then the position weighted smoothing algorithm was used for classified apple tree organs smoothing. Then the agglomerative hierarchical clustering algorithm was used to recognize single apple fruit for yield estimation. On the same training and test set the experimental results showed that the SVM based on linear kernel function outperformed the KNN algorithm and Ensemble algorithm. The Recall, Precision and F1 score of the proposed method for yield estimation were 93.75%, 96.15% and 94.93% respectively. In summary, to solve the problems of apple tree organs classification and yield estimation in natural apple orchard, a novelty method based on multi-features fusion and SVM was proposed and achieve good performance. Moreover, the proposed method could provide technical support for automatic apple picking, automatic pruning of fruit trees, and automatic information acquisition and management in orchards.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining