Recent advances, challenges, and perspective of copper-based liquid-like thermoelectric chalcogenides: A review

IF 10.7 Q1 CHEMISTRY, PHYSICAL EcoMat Pub Date : 2023-06-28 DOI:10.1002/eom2.12391
Abdul Basit, Jiwu Xin, G. Murtaza, Lei Wei, Abdul Hameed, Wang Guoyu, Jiyan Y. Dai
{"title":"Recent advances, challenges, and perspective of copper-based liquid-like thermoelectric chalcogenides: A review","authors":"Abdul Basit,&nbsp;Jiwu Xin,&nbsp;G. Murtaza,&nbsp;Lei Wei,&nbsp;Abdul Hameed,&nbsp;Wang Guoyu,&nbsp;Jiyan Y. Dai","doi":"10.1002/eom2.12391","DOIUrl":null,"url":null,"abstract":"<p>As a group of emerging liquid-like thermoelectric materials for waste heat recovery into useful energy, di-chalcogenides Cu<sub>2</sub>(S, Se, Te) have been considered as superionic thermoelectric materials. Due to their highly disordered degree of Cu-ion in the crystal lattice, Cu<sub>2</sub>(S, Se, Te) compounds can exhibit ultralow thermal conductivity, and in the meantime, their rigid sublattice can decently maintain the electrical performance, making them distinct from other state-of-the-art thermoelectric materials. This review summarizes the well-designed strategies to realize the impressive performance in thermoelectric materials and their modules by linking the adopted approaches such as defect engineering, interfaces, nano-porous inclusions, thin films, dislocations, nano-inclusions, and polycrystalline bulks etc., with the moderate design of the device. Some recent reports are selected to outline the fundamentals, underlined challenges, outlooks, and future development of Cu<sub>2</sub>(S, Se, Te) liquid-like thermoelectric materials. We expect that this review covers the needs of future researchers in choosing some potential materials to explore thermoelectricity and other efficient energy conversion technologies.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"5 9","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12391","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As a group of emerging liquid-like thermoelectric materials for waste heat recovery into useful energy, di-chalcogenides Cu2(S, Se, Te) have been considered as superionic thermoelectric materials. Due to their highly disordered degree of Cu-ion in the crystal lattice, Cu2(S, Se, Te) compounds can exhibit ultralow thermal conductivity, and in the meantime, their rigid sublattice can decently maintain the electrical performance, making them distinct from other state-of-the-art thermoelectric materials. This review summarizes the well-designed strategies to realize the impressive performance in thermoelectric materials and their modules by linking the adopted approaches such as defect engineering, interfaces, nano-porous inclusions, thin films, dislocations, nano-inclusions, and polycrystalline bulks etc., with the moderate design of the device. Some recent reports are selected to outline the fundamentals, underlined challenges, outlooks, and future development of Cu2(S, Se, Te) liquid-like thermoelectric materials. We expect that this review covers the needs of future researchers in choosing some potential materials to explore thermoelectricity and other efficient energy conversion technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜基液态热电硫化物的研究进展、挑战与展望
二硫族化合物Cu2(S, Se, Te)作为一类新兴的废热回收利用的液态热电材料,被认为是一种超离子热电材料。由于Cu2(S, Se, Te)化合物晶格中cu离子的高度无序性,Cu2(S, Se, Te)化合物可以表现出超低的导热性,同时,它们的刚性亚晶格可以很好地保持电性能,使它们区别于其他最先进的热电材料。本文综述了通过缺陷工程、界面、纳米多孔夹杂物、薄膜、位错、纳米夹杂物和多晶块等方法与器件的适度设计相结合,实现热电材料及其模块令人瞩目的性能的精心设计策略。本文选择了一些最近的报告,概述了Cu2(S, Se, Te)液态热电材料的基本原理,强调的挑战,前景和未来的发展。我们希望这篇综述涵盖了未来研究人员在选择一些潜在材料以探索热电和其他高效能量转换技术方面的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Cover Image Issue Information PTAA-infiltrated thin-walled carbon nanotube electrode with hidden encapsulation for perovskite solar cells Halogen-free solvent processed organic solar sub-modules (≈55 cm2) with 14.70% efficiency by controlling the morphology of alkyl chain engineered polymer donor Minimizing voltage losses in Sn perovskite solar cells by Cs2SnI6 passivation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1