RESEARCH ON DAMAGE CHARACTERISTICS AND PROTECTIVE STRUCTURE DESIGN OF STEEL PONTOONS UNDER NEAR-FIELD EXPLOSION LOAD

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE Brodogradnja Pub Date : 2022-10-01 DOI:10.21278/brod73404
K. Li, Z. Zhao, S. Chang, J. Bao, Zhijiang Yuan, Xiaogang Jiang
{"title":"RESEARCH ON DAMAGE CHARACTERISTICS AND PROTECTIVE STRUCTURE DESIGN OF STEEL PONTOONS UNDER NEAR-FIELD EXPLOSION LOAD","authors":"K. Li, Z. Zhao, S. Chang, J. Bao, Zhijiang Yuan, Xiaogang Jiang","doi":"10.21278/brod73404","DOIUrl":null,"url":null,"abstract":"The focus of this paper is to investigate the damage characteristics and protective structure design of pontoons as an important barrier for the protection of ports. Two types of protective measures of pontoons are investigated:filling tanks with water and installing springs in tanks. In this paper, the damage characteristics of two types of pontoon side structures under the action of near-field explosion loads are simulated by using LS-DYNA explicit dynamic analysis software and the ALE algorithm. According to the numerical experiment results for filling different volumes of water in the side tanks, the volume of water for the minimum deformation of the shell plate is 100%, and for the first longitudinal bulkhead, it is 30-40%. Moreover, by applying weights to their deformations based on the actual explosion-proof performance requirements of the shell plate and the first longitudinal bulkhead, the pontoon side structure with the best explosion-proof performance can be obtained. The plastic deformation of the pontoon structure equipped with different types of springs is an order of magnitude smaller than that of the ordinary structure and of the pontoon structure filled with a water medium in the positive tanks. The explosive shock wave energy absorbed by the pontoon is effectively reduced by the addition of water or springs to the protective tanks. The minimum energy absorbed by the pontoon structure with water added in the protective tanks is 18.31% of the energy absorbed by the ordinary structure, and the corresponding volume ratio of water added in the protective tanks is 100%. The pontoon structure with springs in the side protection tanks absorbs only 7.2% of the energy absorbed by the ordinary structure. Both new side protection structures have demonstrated excellent explosion-proof performance.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod73404","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

The focus of this paper is to investigate the damage characteristics and protective structure design of pontoons as an important barrier for the protection of ports. Two types of protective measures of pontoons are investigated:filling tanks with water and installing springs in tanks. In this paper, the damage characteristics of two types of pontoon side structures under the action of near-field explosion loads are simulated by using LS-DYNA explicit dynamic analysis software and the ALE algorithm. According to the numerical experiment results for filling different volumes of water in the side tanks, the volume of water for the minimum deformation of the shell plate is 100%, and for the first longitudinal bulkhead, it is 30-40%. Moreover, by applying weights to their deformations based on the actual explosion-proof performance requirements of the shell plate and the first longitudinal bulkhead, the pontoon side structure with the best explosion-proof performance can be obtained. The plastic deformation of the pontoon structure equipped with different types of springs is an order of magnitude smaller than that of the ordinary structure and of the pontoon structure filled with a water medium in the positive tanks. The explosive shock wave energy absorbed by the pontoon is effectively reduced by the addition of water or springs to the protective tanks. The minimum energy absorbed by the pontoon structure with water added in the protective tanks is 18.31% of the energy absorbed by the ordinary structure, and the corresponding volume ratio of water added in the protective tanks is 100%. The pontoon structure with springs in the side protection tanks absorbs only 7.2% of the energy absorbed by the ordinary structure. Both new side protection structures have demonstrated excellent explosion-proof performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钢浮筒在近场爆炸载荷作用下的损伤特性及防护结构设计研究
本文的重点是研究浮筒作为港口保护的重要屏障的损伤特征和保护结构设计。研究了浮筒的两种保护措施:向储罐注水和在储罐中安装弹簧。本文采用LS-DYNA显式动力分析软件和ALE算法,模拟了两种类型浮筒边结构在近场爆炸载荷作用下的损伤特性。根据侧箱充入不同体积水的数值实验结果,壳板最小变形的水量为100%,第一个纵向舱壁的水量为30-40%。此外,根据壳板和第一纵向舱壁的实际防爆性能要求,通过对其变形施加重量,可以获得具有最佳防爆性能的浮筒侧结构。配备不同类型弹簧的浮筒结构的塑性变形比普通结构和正水箱中充满水介质的浮筒结构小一个数量级。浮筒吸收的爆炸冲击波能量通过在保护罐中添加水或弹簧而有效减少。浮筒结构在保护箱内加水时吸收的最小能量为普通结构吸收能量的18.31%,相应的保护箱内加水体积比为100%。侧面保护箱中带有弹簧的浮筒结构仅吸收普通结构吸收能量的7.2%。两种新型侧面保护结构均表现出优异的防爆性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
期刊最新文献
Probabilistic evaluation of dynamic positioning operability with a Quasi-Monte Carlo approach Influence of scale effect on flow field offset for ships in confined waters On the propeller wake evolution using large eddy simulations and physics-informed space-time decomposition Small Modular AUV Based on 3D Printing Technology: Design, Implementation and Experimental Validation Analysis of damage to ship personnel in different seated postures by near-field underwater explosions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1