Fast Deconvolution for Motion Blur Along the Blurring Paths

Hanyu Hong, Yu Shi
{"title":"Fast Deconvolution for Motion Blur Along the Blurring Paths","authors":"Hanyu Hong, Yu Shi","doi":"10.1109/CJECE.2017.2751623","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a deconvolution method which removes the motion blur along the blurring paths. The 2-D blurred image is transformed into 1-D horizontal blurred vectors along the blurring paths. Hence, the deconvolution of stacked horizontal blurred vectors is implemented in an iterative deconvolution process by a 1-D image restoration method that saves computation time. The deconvolution process is usually implemented in the frequency domain by fast Fourier transform (FFT). The computation time of FFT used in the 1-D image restoration method for the blurred vectors is about two-fifths of that of 2-D FFT used in the common image restoration method. To get stacked horizontal blurred vectors, we first incorporate orthogonal Chebyshev polynomial into the proposed method to extract pixels along the blurring paths. Then, we expand horizontal blurred vectors smoothly to reduce boundary artifacts. At last, we add a nonquadratic regularization term to the Richardson-Lucy algorithm, which adaptively penalizes the image gradients, to avoid oversmoothing of details. Experimental results for real motion-blurred images demonstrate that our approach runs much faster than the 2-D deblurring algorithm, while achieving as high restoration accuracy and visual perception as the 2-D deconvolution algorithm.","PeriodicalId":55287,"journal":{"name":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2017-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CJECE.2017.2751623","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CJECE.2017.2751623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, we propose a deconvolution method which removes the motion blur along the blurring paths. The 2-D blurred image is transformed into 1-D horizontal blurred vectors along the blurring paths. Hence, the deconvolution of stacked horizontal blurred vectors is implemented in an iterative deconvolution process by a 1-D image restoration method that saves computation time. The deconvolution process is usually implemented in the frequency domain by fast Fourier transform (FFT). The computation time of FFT used in the 1-D image restoration method for the blurred vectors is about two-fifths of that of 2-D FFT used in the common image restoration method. To get stacked horizontal blurred vectors, we first incorporate orthogonal Chebyshev polynomial into the proposed method to extract pixels along the blurring paths. Then, we expand horizontal blurred vectors smoothly to reduce boundary artifacts. At last, we add a nonquadratic regularization term to the Richardson-Lucy algorithm, which adaptively penalizes the image gradients, to avoid oversmoothing of details. Experimental results for real motion-blurred images demonstrate that our approach runs much faster than the 2-D deblurring algorithm, while achieving as high restoration accuracy and visual perception as the 2-D deconvolution algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊路径上运动模糊的快速反卷积
在本文中,我们提出了一种去卷积方法,该方法去除了模糊路径上的运动模糊。二维模糊图像沿着模糊路径被变换为一维水平模糊矢量。因此,通过节省计算时间的一维图像恢复方法,在迭代反卷积过程中实现了堆叠水平模糊矢量的反卷积。反褶积过程通常通过快速傅立叶变换(FFT)在频域中实现。在用于模糊矢量的一维图像恢复方法中使用的FFT的计算时间大约是普通图像恢复方法所使用的2-D FFT的五分之二。为了获得堆叠的水平模糊向量,我们首先将正交切比雪夫多项式纳入所提出的方法中,以提取模糊路径上的像素。然后,我们平滑地扩展水平模糊向量以减少边界伪影。最后,我们在Richardson-Lucy算法中添加了一个非二次正则化项,该算法自适应地惩罚图像梯度,以避免细节的过度平滑。对真实运动模糊图像的实验结果表明,我们的方法比二维去模糊算法运行得更快,同时实现了与二维去卷积算法一样高的恢复精度和视觉感知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
27
期刊介绍: The Canadian Journal of Electrical and Computer Engineering (ISSN-0840-8688), issued quarterly, has been publishing high-quality refereed scientific papers in all areas of electrical and computer engineering since 1976
期刊最新文献
Design and Construction of an Advanced Tracking Wheel for Insulator Materials Testing Implementation of Ultrahigh-Speed Decimators Noncoherent Distributed Beamforming in Decentralized Two-Way Relay Networks Fetal ECG Extraction Using Input-Mode and Output-Mode Adaptive Filters With Blind Source Separation Design Consideration to Achieve Wide-Speed-Range Operation in a Switched Reluctance Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1