The effect of topical quercetin loaded liposome on pressure ulcer healing in rats

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY Nanomedicine Journal Pub Date : 2021-07-01 DOI:10.22038/NMJ.2021.56952.1581
N. Bavarsad, N. S. Karampour, G. Hemmati, A. Rezaie
{"title":"The effect of topical quercetin loaded liposome on pressure ulcer healing in rats","authors":"N. Bavarsad, N. S. Karampour, G. Hemmati, A. Rezaie","doi":"10.22038/NMJ.2021.56952.1581","DOIUrl":null,"url":null,"abstract":"Objective(s) Quercetin antioxidant properties could play an important role in various fields of health. However, its use has been limited because of several disadvantages such as very low solubility in water and high instability in the presence of air, light and heat. Encapsulation of quercetin in nanostructure systems such as liposome may lead to decrease the adverse effects and protect this molecule against degradation. The aim of this study was preparation and in-vitro and in-vivo evaluation of liposomes for topical delivery of quercetin to improve the pressure ulcers.Materials and Methods Liposomal formulations were prepared by fusion method and characterized. The amount of drug retained in and penetrated through mouse skin after 8 hours were determined. Also microscopic and macroscopic examination of laboratory animals was performed.Results  Encapsulation efficacy of liposomes was in range 64.66-77.83%. Formulation F4 showed maximum drug release in 8 hours and the remaining drug in the skin layers was more than 46%. Histological investigation suggested that F4 and phenytoin 1% cream have the healing effect on the pressure ulcer during 28 day-treatment.Conclusion Quercetin liposomes due to its natural structure and minimal systemic absorption and side effects can be a suitable candidate for the treatment of pressure ulcers.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"8 1","pages":"187-199"},"PeriodicalIF":1.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/NMJ.2021.56952.1581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Objective(s) Quercetin antioxidant properties could play an important role in various fields of health. However, its use has been limited because of several disadvantages such as very low solubility in water and high instability in the presence of air, light and heat. Encapsulation of quercetin in nanostructure systems such as liposome may lead to decrease the adverse effects and protect this molecule against degradation. The aim of this study was preparation and in-vitro and in-vivo evaluation of liposomes for topical delivery of quercetin to improve the pressure ulcers.Materials and Methods Liposomal formulations were prepared by fusion method and characterized. The amount of drug retained in and penetrated through mouse skin after 8 hours were determined. Also microscopic and macroscopic examination of laboratory animals was performed.Results  Encapsulation efficacy of liposomes was in range 64.66-77.83%. Formulation F4 showed maximum drug release in 8 hours and the remaining drug in the skin layers was more than 46%. Histological investigation suggested that F4 and phenytoin 1% cream have the healing effect on the pressure ulcer during 28 day-treatment.Conclusion Quercetin liposomes due to its natural structure and minimal systemic absorption and side effects can be a suitable candidate for the treatment of pressure ulcers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外用负载槲皮素脂质体对大鼠压疮愈合的影响
目的槲皮素的抗氧化性能可能在健康的各个领域发挥重要作用。然而,由于其在水中的溶解度非常低以及在空气、光和热存在下的高度不稳定性等几个缺点,其使用受到限制。将槲皮素封装在脂质体等纳米结构系统中可以减少不良反应,并保护该分子免受降解。本研究的目的是制备用于局部递送槲皮素以改善压疮的脂质体,并对其进行体外和体内评价。材料与方法采用融合法制备脂质体制剂,并对其进行表征。测定8小时后保留在小鼠皮肤中并穿透小鼠皮肤的药物量。还对实验动物进行了显微镜和宏观检查。结果脂质体的包封率在64.66~77.83%之间,F4制剂在8h内药物释放最大,在皮肤层中的残留药物超过46%。组织学研究表明,F4和1%苯妥英乳膏对28天的压疮有一定的治疗作用。结论槲皮素脂质体结构自然,全身吸收和副作用小,可作为治疗压疮的合适药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomedicine Journal
Nanomedicine Journal NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Nano aptasensors for detection of streptomycin: A review Synthesis of silver nanoparticles by Galega officinalis and its hypoglycemic effects in type 1 diabetic rats Evaluation of mPEG-PLA nanoparticles as vaccine delivery system for modified protective antigen of Bacillus anthracis Synthesis and evaluation of SPION@CMD@Ser-LTVSPWY peptide as a targeted probe for detection of HER2+ cancer cells in MRI Synthesis of L-DOPA conjugated doxorubicin-polyethylenimine nanocarrier and evaluation of its cytotoxicity on A375 and HepG2 cell lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1