Fabrication of radially aligned electrospun nanofibers in a three-dimensional conical shape

M. Vong, N. Radacsi
{"title":"Fabrication of radially aligned electrospun nanofibers in a three-dimensional conical shape","authors":"M. Vong, N. Radacsi","doi":"10.1515/esp-2018-0001","DOIUrl":null,"url":null,"abstract":"Abstract This paper reports on the rapid fabrication of radially-aligned, three-dimensional conical structures by electrospinning. Three different polymers, Polyvinylpyrrolidone, Polystyrene and Polyacrylonitrile were used to electrospin the cones. These cone structures are spreading out from a vertical conductive pillar, which can be arbitrarily placed on specific part of the collector. The lower part of the cone is clearly defined on the collector, and the cone has a relatively uniform radius around the pillar. The cones are constituted of fibers that are radially aligned towards the top of the pillar, but there is no apex and the fibers fall flat on the top of the pillar surface. A parametric study has been performed to investigate the effects of the pillar morphology (height and thickness) and the electrospinning parameters (applied voltage and working distance) on the overall shape and size of the cone structure, as well as the fiber alignment. The pillar morphology influences directly the cone diameter and height. The electrospinning parameters have little effect on the cone structure. The formation mechanism has been identified to be related to the shape of the electric field, which has been systematically simulated to understand the effect of the electric field lines on the final dimensions of the cone structure.","PeriodicalId":92629,"journal":{"name":"Electrospinning","volume":"2 1","pages":"1 - 14"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/esp-2018-0001","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrospinning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/esp-2018-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract This paper reports on the rapid fabrication of radially-aligned, three-dimensional conical structures by electrospinning. Three different polymers, Polyvinylpyrrolidone, Polystyrene and Polyacrylonitrile were used to electrospin the cones. These cone structures are spreading out from a vertical conductive pillar, which can be arbitrarily placed on specific part of the collector. The lower part of the cone is clearly defined on the collector, and the cone has a relatively uniform radius around the pillar. The cones are constituted of fibers that are radially aligned towards the top of the pillar, but there is no apex and the fibers fall flat on the top of the pillar surface. A parametric study has been performed to investigate the effects of the pillar morphology (height and thickness) and the electrospinning parameters (applied voltage and working distance) on the overall shape and size of the cone structure, as well as the fiber alignment. The pillar morphology influences directly the cone diameter and height. The electrospinning parameters have little effect on the cone structure. The formation mechanism has been identified to be related to the shape of the electric field, which has been systematically simulated to understand the effect of the electric field lines on the final dimensions of the cone structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维锥形径向排列静电纺丝纳米纤维的制备
摘要本文报道了通过静电纺丝快速制备径向排列的三维锥形结构。三种不同的聚合物,聚乙烯吡咯烷酮,聚苯乙烯和聚丙烯腈被用于电纺丝锥。这些锥形结构从垂直导电柱上展开,导电柱可以任意放置在收集器的特定部分上。锥体的下部在收集器上有明确的定义,锥体在支柱周围有相对均匀的半径。锥体由朝向支柱顶部径向排列的纤维组成,但没有顶点,纤维在支柱表面的顶部平放。进行了参数研究,以研究柱形态(高度和厚度)和静电纺丝参数(施加电压和工作距离)对锥体结构的整体形状和尺寸以及纤维排列的影响。柱体形态直接影响锥体的直径和高度。静电纺丝参数对锥体结构影响不大。已确定形成机制与电场的形状有关,并对其进行了系统模拟,以了解电场线对锥体结构最终尺寸的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fabrication and Bioapplications of Magnetically Modified Chitosan-based Electrospun Nanofibers Fabrication of radially aligned electrospun nanofibers in a three-dimensional conical shape Solvent retention in electrospun fibers affects scaffold mechanical properties. Decellularized extracellular matrices for tissue engineering applications Using Electrospun Scaffolds to Promote Macrophage Phenotypic Modulation and Support Wound Healing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1