{"title":"Influence of Surface Texture Parameters on Friction Characteristics Under Starved Lubrication","authors":"Shen Wu, Pan Zhang, Haijun Wei, L. Chen","doi":"10.2478/pomr-2020-0031","DOIUrl":null,"url":null,"abstract":"Abstract A cylinder liner and piston ring running under starved lubrication near the top dead centre (TDC) and bottom dead centre (BDC) cause abnormal friction and wear during operation of a marine diesel engine. The method of laser texturing is proposed to improve the surface friction property under this condition. Spherical crown pits with different parameters were formed on the surface of samples by femtosecond laser processing. The BDC and TDC conditions of oil starvation were simulated in a reciprocating friction and wear experiment, and a numerical model of surface texture lubrication based on the Reynolds equation was established. The influence of the distribution density, diameter, and depth parameters of the texture on the surface properties was studied. In the BDC condition, compared with the untextured surface, the average coefficient of friction (COF) can be reduced by up to 24% and the average friction force can be reduced by up to 18%. In the TDC condition, the COF can be reduced by up to 19%, and the average friction force can be reduced by up to 18%. Therefore, the textures with various parameters should be arranged in different positions on the cylinder liner; more attention should be paid to the optimisation of diameter in the texture of the cylinder liner near the BDC, whereas more attention should be paid to the optimisation of distribution density in the texture of the cylinder liner near the TDC","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2020-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract A cylinder liner and piston ring running under starved lubrication near the top dead centre (TDC) and bottom dead centre (BDC) cause abnormal friction and wear during operation of a marine diesel engine. The method of laser texturing is proposed to improve the surface friction property under this condition. Spherical crown pits with different parameters were formed on the surface of samples by femtosecond laser processing. The BDC and TDC conditions of oil starvation were simulated in a reciprocating friction and wear experiment, and a numerical model of surface texture lubrication based on the Reynolds equation was established. The influence of the distribution density, diameter, and depth parameters of the texture on the surface properties was studied. In the BDC condition, compared with the untextured surface, the average coefficient of friction (COF) can be reduced by up to 24% and the average friction force can be reduced by up to 18%. In the TDC condition, the COF can be reduced by up to 19%, and the average friction force can be reduced by up to 18%. Therefore, the textures with various parameters should be arranged in different positions on the cylinder liner; more attention should be paid to the optimisation of diameter in the texture of the cylinder liner near the BDC, whereas more attention should be paid to the optimisation of distribution density in the texture of the cylinder liner near the TDC