{"title":"On the prediction of source code design problems: A systematic mapping study","authors":"R. Silva, Kleinner Silva Farias, Rafael Kunst","doi":"10.22201/icat.24486736e.2023.21.3.1749","DOIUrl":null,"url":null,"abstract":"Context: Nowadays, the prediction of source code design problems plays an essential role in the software development industry, identifying defective architectural modules in advance. For this reason, some studies explored this subject in the last decade. Researchers and practitioners often need to create an overview of such studies considering the predictors of design problems, their main contributions, the used prediction techniques and research methods. Problem: However, the current literature remains scarce of studies proposing a detailed mapping of studies already published. Objective: This article, therefore, focuses on classifying the current literature and pinpointing trends and challenges worth investigating in this research field. Method: A systematic mapping of the literature was designed and performed based on well-established practical guidelines. In total, 35 primary studies were selected, analyzed, and categorized after applying a careful filtering process from a corpus of 894 candidate studies to answer six research questions. Results: The main results are that a majority of the primary studies (1) explore Bloater bad smells, (2) use code complexity and size as predictors, (3) apply machine learning techniques to generate predictions, and (4) present a prediction proposal without an extensive empirical assessment. Conclusions: Predicting design problems is still in its infancy, showing that there is plenty of room for future work. Finally, this study can serve as a starting point for the research community","PeriodicalId":15073,"journal":{"name":"Journal of Applied Research and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/icat.24486736e.2023.21.3.1749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Context: Nowadays, the prediction of source code design problems plays an essential role in the software development industry, identifying defective architectural modules in advance. For this reason, some studies explored this subject in the last decade. Researchers and practitioners often need to create an overview of such studies considering the predictors of design problems, their main contributions, the used prediction techniques and research methods. Problem: However, the current literature remains scarce of studies proposing a detailed mapping of studies already published. Objective: This article, therefore, focuses on classifying the current literature and pinpointing trends and challenges worth investigating in this research field. Method: A systematic mapping of the literature was designed and performed based on well-established practical guidelines. In total, 35 primary studies were selected, analyzed, and categorized after applying a careful filtering process from a corpus of 894 candidate studies to answer six research questions. Results: The main results are that a majority of the primary studies (1) explore Bloater bad smells, (2) use code complexity and size as predictors, (3) apply machine learning techniques to generate predictions, and (4) present a prediction proposal without an extensive empirical assessment. Conclusions: Predicting design problems is still in its infancy, showing that there is plenty of room for future work. Finally, this study can serve as a starting point for the research community
期刊介绍:
The Journal of Applied Research and Technology (JART) is a bimonthly open access journal that publishes papers on innovative applications, development of new technologies and efficient solutions in engineering, computing and scientific research. JART publishes manuscripts describing original research, with significant results based on experimental, theoretical and numerical work.
The journal does not charge for submission, processing, publication of manuscripts or for color reproduction of photographs.
JART classifies research into the following main fields:
-Material Science:
Biomaterials, carbon, ceramics, composite, metals, polymers, thin films, functional materials and semiconductors.
-Computer Science:
Computer graphics and visualization, programming, human-computer interaction, neural networks, image processing and software engineering.
-Industrial Engineering:
Operations research, systems engineering, management science, complex systems and cybernetics applications and information technologies
-Electronic Engineering:
Solid-state physics, radio engineering, telecommunications, control systems, signal processing, power electronics, electronic devices and circuits and automation.
-Instrumentation engineering and science:
Measurement devices (pressure, temperature, flow, voltage, frequency etc.), precision engineering, medical devices, instrumentation for education (devices and software), sensor technology, mechatronics and robotics.