Dominika Staniszewska, T. Liwosz, A. Pachuta, D. Próchniewicz, R. Szpunar
{"title":"Geodynamic Studies in the Pieniny Klippen Belt in 2004–2020","authors":"Dominika Staniszewska, T. Liwosz, A. Pachuta, D. Próchniewicz, R. Szpunar","doi":"10.2478/arsa-2023-0007","DOIUrl":null,"url":null,"abstract":"ABSTRACT The Pieniny Geodynamic Test Field is situated in the middle of the region between the Inner and Outer Carpathians. Geodynamic research conducted in the past in the Pieniny Klippen Belt (PKB) region were suggestive of neotectonic activity. The goal of the investigation was to determine whether the nearby structures, the Podhale Flysh (FP) and the Magura Nappe (MN), are affected by neotectonic activity in the PKB. The goal of the study was to ascertain the velocity and direction of motion of stations situated close to the Pieniny Geodynamic Test Field’s 3 main structures. Twelve GNSS stations, including 6 in the PKB, 3 in the MN, and 3 in the FP, make up the Pieniny Geodynamic Test Field. Three GNSS sites in the Tatra Mountains (TM) complete the entire geodynamic test field. The satellite observations made between 2004 and 2020 (excluding the year 2005 due to lack of observation) were investigated to identify the horizontal movements. Using the IGb14 reference system, the station’s positions and velocities were calculated. First, daily sessions were used to process the horizontal coordinates of the points for an average observation epoch in a given year. Sixteen measurement epochs were included in the long-time solution. Based on the horizontal velocity residues in the north–south and east–west directions, the station’s movement was calculated. The collected results were compared to information from the EUREF Permanent GNSS Network (EUREF) and to the findings of prior research on the tectonic activity of the PKB. The results of horizontal displacements calculated using GNSS measurements in the area of the PKB and nearby structures—the MN and the FP are presented and analyzed in this article.","PeriodicalId":43216,"journal":{"name":"Artificial Satellites-Journal of Planetary Geodesy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Satellites-Journal of Planetary Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/arsa-2023-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The Pieniny Geodynamic Test Field is situated in the middle of the region between the Inner and Outer Carpathians. Geodynamic research conducted in the past in the Pieniny Klippen Belt (PKB) region were suggestive of neotectonic activity. The goal of the investigation was to determine whether the nearby structures, the Podhale Flysh (FP) and the Magura Nappe (MN), are affected by neotectonic activity in the PKB. The goal of the study was to ascertain the velocity and direction of motion of stations situated close to the Pieniny Geodynamic Test Field’s 3 main structures. Twelve GNSS stations, including 6 in the PKB, 3 in the MN, and 3 in the FP, make up the Pieniny Geodynamic Test Field. Three GNSS sites in the Tatra Mountains (TM) complete the entire geodynamic test field. The satellite observations made between 2004 and 2020 (excluding the year 2005 due to lack of observation) were investigated to identify the horizontal movements. Using the IGb14 reference system, the station’s positions and velocities were calculated. First, daily sessions were used to process the horizontal coordinates of the points for an average observation epoch in a given year. Sixteen measurement epochs were included in the long-time solution. Based on the horizontal velocity residues in the north–south and east–west directions, the station’s movement was calculated. The collected results were compared to information from the EUREF Permanent GNSS Network (EUREF) and to the findings of prior research on the tectonic activity of the PKB. The results of horizontal displacements calculated using GNSS measurements in the area of the PKB and nearby structures—the MN and the FP are presented and analyzed in this article.