{"title":"Channel attention-based spatial-temporal graph neural networks for traffic prediction","authors":"Bin Wang, Fan Gao, Le Tong, Qian Zhang, Sulei Zhu","doi":"10.1108/dta-09-2022-0378","DOIUrl":null,"url":null,"abstract":"PurposeTraffic flow prediction has always been a top priority of intelligent transportation systems. There are many mature methods for short-term traffic flow prediction. However, the existing methods are often insufficient in capturing long-term spatial-temporal dependencies. To predict long-term dependencies more accurately, in this paper, a new and more effective traffic flow prediction model is proposed.Design/methodology/approachThis paper proposes a new and more effective traffic flow prediction model, named channel attention-based spatial-temporal graph neural networks. A graph convolutional network is used to extract local spatial-temporal correlations, a channel attention mechanism is used to enhance the influence of nearby spatial-temporal dependencies on decision-making and a transformer mechanism is used to capture long-term dependencies.FindingsThe proposed model is applied to two common highway datasets: METR-LA collected in Los Angeles and PEMS-BAY collected in the California Bay Area. This model outperforms the other five in terms of performance on three performance metrics a popular model.Originality/value(1) Based on the spatial-temporal synchronization graph convolution module, a spatial-temporal channel attention module is designed to increase the influence of proximity dependence on decision-making by enhancing or suppressing different channels. (2) To better capture long-term dependencies, the transformer module is introduced.","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-09-2022-0378","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeTraffic flow prediction has always been a top priority of intelligent transportation systems. There are many mature methods for short-term traffic flow prediction. However, the existing methods are often insufficient in capturing long-term spatial-temporal dependencies. To predict long-term dependencies more accurately, in this paper, a new and more effective traffic flow prediction model is proposed.Design/methodology/approachThis paper proposes a new and more effective traffic flow prediction model, named channel attention-based spatial-temporal graph neural networks. A graph convolutional network is used to extract local spatial-temporal correlations, a channel attention mechanism is used to enhance the influence of nearby spatial-temporal dependencies on decision-making and a transformer mechanism is used to capture long-term dependencies.FindingsThe proposed model is applied to two common highway datasets: METR-LA collected in Los Angeles and PEMS-BAY collected in the California Bay Area. This model outperforms the other five in terms of performance on three performance metrics a popular model.Originality/value(1) Based on the spatial-temporal synchronization graph convolution module, a spatial-temporal channel attention module is designed to increase the influence of proximity dependence on decision-making by enhancing or suppressing different channels. (2) To better capture long-term dependencies, the transformer module is introduced.