Quantitative Proteomic Assessment of Key Proteins Regulated by Electrical Pulse-mediated Galloflavin Delivery in Triple-Negative Breast Cancer Cells

Q3 Biochemistry, Genetics and Molecular Biology Biointerface Research in Applied Chemistry Pub Date : 2022-07-19 DOI:10.33263/briac133.297
{"title":"Quantitative Proteomic Assessment of Key Proteins Regulated by Electrical Pulse-mediated Galloflavin Delivery in Triple-Negative Breast Cancer Cells","authors":"","doi":"10.33263/briac133.297","DOIUrl":null,"url":null,"abstract":"Triple-negative breast cancer (TNBC) is the most lethal subset of breast cancers, lacking targeted therapies. There is a critical need to identify alternative treatments for TNBC. Towards this, in this research, we investigated the anticancer effects of Galloflavin (GF), an LDHB inhibitor, in reducing the proliferation of MDA-MB-231, the human triple-negative breast cancer cells. To enhance the uptake of GF, we applied electrical pulses (EP) with GF and studied its protein profile characteristics and viability. We used GF at a concentration of 100μM with 800V/cm, 100μs, and eight electrical pulses to treat these cells. Label-free, high throughput, quantitative proteomics results indicated that 172 proteins were significantly downregulated, while 222 proteins were significantly upregulated. The upregulated proteins include Cytochrome C Oxidase Assembly Factor and Mitochondrial Ribosomal proteins. Key downregulated proteins include LDHB, and ENO1 in EP+GF treatments, compared to GF only, indicating the effect of EP+GF combination in reducing the proliferation of the TNBC cells. These results pave the path for additional therapy for TNBC and the various pathways the TNBC cells proceeded with Electrochemotherapy.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac133.297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

Abstract

Triple-negative breast cancer (TNBC) is the most lethal subset of breast cancers, lacking targeted therapies. There is a critical need to identify alternative treatments for TNBC. Towards this, in this research, we investigated the anticancer effects of Galloflavin (GF), an LDHB inhibitor, in reducing the proliferation of MDA-MB-231, the human triple-negative breast cancer cells. To enhance the uptake of GF, we applied electrical pulses (EP) with GF and studied its protein profile characteristics and viability. We used GF at a concentration of 100μM with 800V/cm, 100μs, and eight electrical pulses to treat these cells. Label-free, high throughput, quantitative proteomics results indicated that 172 proteins were significantly downregulated, while 222 proteins were significantly upregulated. The upregulated proteins include Cytochrome C Oxidase Assembly Factor and Mitochondrial Ribosomal proteins. Key downregulated proteins include LDHB, and ENO1 in EP+GF treatments, compared to GF only, indicating the effect of EP+GF combination in reducing the proliferation of the TNBC cells. These results pave the path for additional therapy for TNBC and the various pathways the TNBC cells proceeded with Electrochemotherapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电脉冲介导的三阴性乳腺癌症细胞中核黄素转运调控关键蛋白的定量蛋白质组学评估
癌症三阴性(TNBC)是乳腺癌中最致命的亚群,缺乏靶向治疗。迫切需要确定TNBC的替代治疗方法。为此,在本研究中,我们研究了LDHB抑制剂加洛黄素(GF)在减少MDA-MB-231(人类癌症三阴性细胞)增殖方面的抗癌作用。为了增强GF的摄取,我们用GF施加电脉冲(EP),并研究其蛋白质谱特征和活力。我们使用浓度为100μM、800V/cm、100μs和8个电脉冲的GF来处理这些细胞。无标记、高通量、定量蛋白质组学结果表明,172种蛋白质显著下调,222种蛋白质显著上调。上调的蛋白质包括细胞色素C氧化酶组装因子和线粒体核糖体蛋白质。与仅GF相比,EP+GF处理中的关键下调蛋白包括LDHB和ENO1,这表明EP+GF组合在减少TNBC细胞增殖方面的作用。这些结果为TNBC的额外治疗以及TNBC细胞进行电化学治疗的各种途径铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
256
期刊介绍: Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.
期刊最新文献
Editorial. Thirteen Years of Free Publication: From the Optimistic Horizons to Failure and Discreditation Comparative Review of Different Adsorption Techniques Used in Heavy Metals Removal in Water Microstructure and Elastic Properties of Hydroxyapatite/Alumina Nanocomposites Prepared by Mechanical Alloying Technique for Biomedical Applications Investigation on Controlling Therapy of Bone Skeletal and Marrow Cancer: A Biophysical Chemistry and Molecular Dynamic Study of Bisphosphonates Interaction with Bone Structures The Theoretical Description for Amavadin-Ion Electrochemical Determination in Amanita muscaria Mushroom Pulp and Extract by Galvanostatic Conducting Polymer Doping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1