{"title":"The effect of liquid grinding aids on the dry fine grinding of muscovite","authors":"V. Bozkurt, S. Çayirli, Serkan Gokcen, Y. Ucbas","doi":"10.37190/ppmp/165854","DOIUrl":null,"url":null,"abstract":"This paper investigates the production of a micronized muscovite to a target product size of d50~15 µm with a minimum energy consumption to suit the product requirements of the paint industry by a dry grinding process in a laboratory-scale vertical stirred ball mill. A series of batch dry grinding tests were conducted without and with two commonly used industrial liquid grinding aids, ethylene glycol (EG, C2H6O2) and triethanolamine (TEA, C6H15NO3). The results were evaluated based on particle size distribution (PSD), specific energy consumption, span value, and aspect ratio. The results showed that using liquid grinding aids resulted in a finer PSD, lower specific energy consumption, a narrower size distribution, lower span values, and a higher aspect ratio, which meant better delamination and improved grinding efficiency to that of no grinding aid. The interaction between grinding aids and ground muscovite surfaces was investigated by Fourier Transform Infrared Spectroscopy (FTIR). FTIR measurements revealed that EG and TEA were physically adsorbed on muscovite surfaces. Scanning Electron Microscopy (SEM) was also employed to determine differences between ground muscovite surfaces with and without grinding aids. SEM images indicated that grinding aids could prevent the agglomeration of ground muscovite particles while improving delamination. Adding grinding aids led to a decrease in muscovite agglomeration and an improvement in lamination owing to the adsorption of grinding aids on the particle surfaces.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/165854","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the production of a micronized muscovite to a target product size of d50~15 µm with a minimum energy consumption to suit the product requirements of the paint industry by a dry grinding process in a laboratory-scale vertical stirred ball mill. A series of batch dry grinding tests were conducted without and with two commonly used industrial liquid grinding aids, ethylene glycol (EG, C2H6O2) and triethanolamine (TEA, C6H15NO3). The results were evaluated based on particle size distribution (PSD), specific energy consumption, span value, and aspect ratio. The results showed that using liquid grinding aids resulted in a finer PSD, lower specific energy consumption, a narrower size distribution, lower span values, and a higher aspect ratio, which meant better delamination and improved grinding efficiency to that of no grinding aid. The interaction between grinding aids and ground muscovite surfaces was investigated by Fourier Transform Infrared Spectroscopy (FTIR). FTIR measurements revealed that EG and TEA were physically adsorbed on muscovite surfaces. Scanning Electron Microscopy (SEM) was also employed to determine differences between ground muscovite surfaces with and without grinding aids. SEM images indicated that grinding aids could prevent the agglomeration of ground muscovite particles while improving delamination. Adding grinding aids led to a decrease in muscovite agglomeration and an improvement in lamination owing to the adsorption of grinding aids on the particle surfaces.
期刊介绍:
Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy.
Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal.
Topics of interest
Analytical techniques and applied mineralogy
Computer applications
Comminution, classification and sorting
Froth flotation
Solid-liquid separation
Gravity concentration
Magnetic and electric separation
Hydro and biohydrometallurgy
Extractive metallurgy
Recycling and mineral wastes
Environmental aspects of mineral processing
and other mineral processing related subjects.