Research progress on activity and biosynthesis of diketopiperazines

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Mini-reviews in Organic Chemistry Pub Date : 2023-05-12 DOI:10.2174/1570193x20666230512162559
Ning Chen, Bing-jing Liu, Ruiyang Lu, Hongliang Yuan, Jintong Zhao, Yuechen Zhao
{"title":"Research progress on activity and biosynthesis of diketopiperazines","authors":"Ning Chen, Bing-jing Liu, Ruiyang Lu, Hongliang Yuan, Jintong Zhao, Yuechen Zhao","doi":"10.2174/1570193x20666230512162559","DOIUrl":null,"url":null,"abstract":"\n\nDiketopiperazines (DKPs) are mainly produced by microorganisms. In recent years, active natural products with DKPs structure have been isolated from marine bacteria, actinomycetes and fungi. The stable six-membered ring framework makes DKPs a vital pharmacophore in medicinal chemistry. Several recent studies have demonstrated that it has antibacterial, antifungal, antiviral, antitumor, immunosuppressive, neuroprotective, anti-malaria, anti-prion, and anti-hyperglycemia properties. Some DKPs are signaling molecules for intercellular communication, which can activate or inhibit bacterial Lux R-mediated quorum sensing. They are considered potential new anti-infective drugs that could control biofilm formation by interfering with information communication between microbes. DKPs possess excellent biological activities and have received extensive attention from medicinal chemistry workers. Bioactivity studies of DKPs have revealed that many highly active lead compounds exist in antibacterial, antitumor, and antiviral fields and in treating neurological disorders. This paper reviews the research progress of diketopiperazines in the past ten years.\n","PeriodicalId":18632,"journal":{"name":"Mini-reviews in Organic Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini-reviews in Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570193x20666230512162559","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Diketopiperazines (DKPs) are mainly produced by microorganisms. In recent years, active natural products with DKPs structure have been isolated from marine bacteria, actinomycetes and fungi. The stable six-membered ring framework makes DKPs a vital pharmacophore in medicinal chemistry. Several recent studies have demonstrated that it has antibacterial, antifungal, antiviral, antitumor, immunosuppressive, neuroprotective, anti-malaria, anti-prion, and anti-hyperglycemia properties. Some DKPs are signaling molecules for intercellular communication, which can activate or inhibit bacterial Lux R-mediated quorum sensing. They are considered potential new anti-infective drugs that could control biofilm formation by interfering with information communication between microbes. DKPs possess excellent biological activities and have received extensive attention from medicinal chemistry workers. Bioactivity studies of DKPs have revealed that many highly active lead compounds exist in antibacterial, antitumor, and antiviral fields and in treating neurological disorders. This paper reviews the research progress of diketopiperazines in the past ten years.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二酮哌嗪类化合物的活性及生物合成研究进展
二酮哌嗪(DKPs)主要由微生物产生。近年来,从海洋细菌、放线菌和真菌中分离出具有DKPs结构的活性天然产物。稳定的六元环框架使DKPs成为药物化学中重要的药效团。最近的几项研究表明,它具有抗菌、抗真菌、抗病毒、抗肿瘤、免疫抑制、神经保护、抗疟疾、抗朊病毒和抗高血糖的特性。一些DKP是细胞间通讯的信号分子,可以激活或抑制细菌Lux R介导的群体感应。它们被认为是潜在的新型抗感染药物,可以通过干扰微生物之间的信息交流来控制生物膜的形成。DKPs具有优异的生物活性,受到药物化学工作者的广泛关注。DKPs的生物活性研究表明,许多高活性的先导化合物存在于抗菌、抗肿瘤和抗病毒领域以及治疗神经系统疾病中。本文综述了近十年来二酮哌嗪类化合物的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mini-reviews in Organic Chemistry
Mini-reviews in Organic Chemistry 化学-有机化学
CiteScore
4.50
自引率
4.30%
发文量
116
审稿时长
>12 weeks
期刊介绍: Mini-Reviews in Organic Chemistry is a peer reviewed journal which publishes original reviews on all areas of organic chemistry including organic synthesis, bioorganic and medicinal chemistry, natural product chemistry, molecular recognition, and physical organic chemistry. The emphasis will be on publishing quality papers very rapidly, without any charges. The journal encourages submission of reviews on emerging fields of organic chemistry including: Bioorganic Chemistry Carbohydrate Chemistry Chemical Biology Chemical Process Research Computational Organic Chemistry Development of Synthetic Methodologies Functional Organic Materials Heterocyclic Chemistry Macromolecular Chemistry Natural Products Isolation And Synthesis New Synthetic Methodology Organic Reactions Organocatalysis Organometallic Chemistry Theoretical Organic Chemistry Polymer Chemistry Stereochemistry Structural Investigations Supramolecular Chemistry
期刊最新文献
Research Progress on Compounds with Antioxidant Activity Derived from Microorganisms Synthesis of Indazole Scaffolds from Arynes and Suitable Coupling Partners - A Brief Review Multifunctional Smart Nano Biopolymers for Programmed Controlled Release of Biomolecules and Therapeutic Agents: An Overview on Modern Emerging Systems A Comprehensive Review on History, Sources, Biosynthesis, Chemical Synthesis and Applications of Stilbenes Research Progress in Chemical Synthesis and Biosynthesis of Bioactive Imidazole Alkaloids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1