Zhichao Gong , Bowen Wang , Yanqiu Xing , Yifan Xu , Zhengguo Qin , Yongqian Chen , Fan Zhang , Fei Gao , Bin Li , Yan Yin , Qing Du , Kui Jiao
{"title":"High-precision and efficiency diagnosis for polymer electrolyte membrane fuel cell based on physical mechanism and deep learning","authors":"Zhichao Gong , Bowen Wang , Yanqiu Xing , Yifan Xu , Zhengguo Qin , Yongqian Chen , Fan Zhang , Fei Gao , Bin Li , Yan Yin , Qing Du , Kui Jiao","doi":"10.1016/j.etran.2023.100275","DOIUrl":null,"url":null,"abstract":"<div><p>As a nonlinear and dynamic system, the polymer electrolyte membrane fuel cell (PEMFC) system requires a comprehensive failure prediction and health management system to ensure its safety and reliability. In this study, a data-driven PEMFC health diagnosis framework is proposed, coupling the fault embedding model, sensor pre-selection method and deep learning diagnosis model. Firstly, a physical-based mechanism fault embedding model of PEMFC is developed to collect the data on various health states. This model can be utilized to determine the effects of different faults on cell performance and assist in the pre-selection of sensors. Then, considering the effect of fault pattern on decline, a sensor pre-selection method based on the analytical model is proposed to filter the insensitive variable from the sensor set. The diagnosis accuracy and computational time could be improved 3.7% and 40% with the help of pre-selection approach, respectively. Finally, the data collected by the optimal sensor set is utilized to develop the fault diagnosis model based on 1D-convolutional neural network (CNN). The results show that the proposed health diagnosis framework has better diagnosis performance compared with other popular diagnosis models and is conducive to online diagnosis, with 99.2% accuracy, higher computational efficiency, faster convergence speed and smaller training error. It is demonstrated that faster convergence speed and smaller training error are reflected in the proposed health diagnosis framework, which can significantly reduce computational costs.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":null,"pages":null},"PeriodicalIF":15.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116823000504","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
As a nonlinear and dynamic system, the polymer electrolyte membrane fuel cell (PEMFC) system requires a comprehensive failure prediction and health management system to ensure its safety and reliability. In this study, a data-driven PEMFC health diagnosis framework is proposed, coupling the fault embedding model, sensor pre-selection method and deep learning diagnosis model. Firstly, a physical-based mechanism fault embedding model of PEMFC is developed to collect the data on various health states. This model can be utilized to determine the effects of different faults on cell performance and assist in the pre-selection of sensors. Then, considering the effect of fault pattern on decline, a sensor pre-selection method based on the analytical model is proposed to filter the insensitive variable from the sensor set. The diagnosis accuracy and computational time could be improved 3.7% and 40% with the help of pre-selection approach, respectively. Finally, the data collected by the optimal sensor set is utilized to develop the fault diagnosis model based on 1D-convolutional neural network (CNN). The results show that the proposed health diagnosis framework has better diagnosis performance compared with other popular diagnosis models and is conducive to online diagnosis, with 99.2% accuracy, higher computational efficiency, faster convergence speed and smaller training error. It is demonstrated that faster convergence speed and smaller training error are reflected in the proposed health diagnosis framework, which can significantly reduce computational costs.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.