Exogenous Selenium Endows Salt-Tolerant and Salt-Sensitive Soybeans with Salt Tolerance through Plant-Microbial Coactions

IF 3.3 2区 农林科学 Q1 AGRONOMY Agronomy-Basel Pub Date : 2023-08-29 DOI:10.3390/agronomy13092271
Yin Wang, Chao Xu, H. Wuriyanghan, Zheng Lei, Yanni Tang, Huang Zhang, Xiaohu Zhao
{"title":"Exogenous Selenium Endows Salt-Tolerant and Salt-Sensitive Soybeans with Salt Tolerance through Plant-Microbial Coactions","authors":"Yin Wang, Chao Xu, H. Wuriyanghan, Zheng Lei, Yanni Tang, Huang Zhang, Xiaohu Zhao","doi":"10.3390/agronomy13092271","DOIUrl":null,"url":null,"abstract":"Soil salinization is a common abiotic stress that seriously affects soybean growth and yield, underscoring the need to enhance plant salt tolerance for sustainable agriculture development. Selenium is a beneficial element that has been shown to promote plant growth, development and stress resistance. This study employed pot experiments to investigate the effects of different salt levels (0, 50, 100 and 150 mM NaCl) on salt-tolerant (Zhonghuang 13) and salt-sensitive soybean (Dongnong 63) varieties. Additionally, the critical salt concentration (100 mM NaCl) was selected to explore the effects of exogenous selenium (0, 0.5, 1 and 3 mg·kg−1) on improving salt tolerance in salt-tolerant and salt-sensitive soybeans under salt stress. Results showed that as salt concentration increased, plant height, shoot and root fresh weight, SPAD value and enzyme activity of both salt-tolerant and salt-sensitive soybeans significantly decreased. The increasing concentration of exogenous selenium significantly decreased the proline content of salt-sensitive and salt-tolerant soybeans by 40.65–58.87% and 38.51–50.46%, respectively, and the MDA content by 19.33–30.36% and 16.94–37.48%, respectively. Selenium supplementation also reduced the content of Na+ in salt-sensitive and salt-tolerant soybeans and improved K+ absorption in soybeans, which increased the K+/Na+ ratio. Moreover, high-throughput sequencing of the 16S ribosomal RNA gene demonstrated that selenium application optimized the rhizosphere microecology structure of salt-tolerant and salt-sensitive soybean varieties and enhanced functional genes related to lipid metabolism, energy metabolism and cell motility of rhizosphere microorganisms. In summary, selenium application improved the salt tolerance of the two soybean varieties by enhancing the physiological resistance to salt stress and optimizing the structure and function of the rhizosphere microbial community.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agronomy13092271","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil salinization is a common abiotic stress that seriously affects soybean growth and yield, underscoring the need to enhance plant salt tolerance for sustainable agriculture development. Selenium is a beneficial element that has been shown to promote plant growth, development and stress resistance. This study employed pot experiments to investigate the effects of different salt levels (0, 50, 100 and 150 mM NaCl) on salt-tolerant (Zhonghuang 13) and salt-sensitive soybean (Dongnong 63) varieties. Additionally, the critical salt concentration (100 mM NaCl) was selected to explore the effects of exogenous selenium (0, 0.5, 1 and 3 mg·kg−1) on improving salt tolerance in salt-tolerant and salt-sensitive soybeans under salt stress. Results showed that as salt concentration increased, plant height, shoot and root fresh weight, SPAD value and enzyme activity of both salt-tolerant and salt-sensitive soybeans significantly decreased. The increasing concentration of exogenous selenium significantly decreased the proline content of salt-sensitive and salt-tolerant soybeans by 40.65–58.87% and 38.51–50.46%, respectively, and the MDA content by 19.33–30.36% and 16.94–37.48%, respectively. Selenium supplementation also reduced the content of Na+ in salt-sensitive and salt-tolerant soybeans and improved K+ absorption in soybeans, which increased the K+/Na+ ratio. Moreover, high-throughput sequencing of the 16S ribosomal RNA gene demonstrated that selenium application optimized the rhizosphere microecology structure of salt-tolerant and salt-sensitive soybean varieties and enhanced functional genes related to lipid metabolism, energy metabolism and cell motility of rhizosphere microorganisms. In summary, selenium application improved the salt tolerance of the two soybean varieties by enhancing the physiological resistance to salt stress and optimizing the structure and function of the rhizosphere microbial community.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外源硒通过植物与微生物的协同作用使耐盐和盐敏感大豆具有耐盐性
土壤盐碱化是一种常见的非生物胁迫,严重影响大豆的生长和产量,强调了提高植物耐盐性以促进农业可持续发展的必要性。硒是一种有益的元素,已被证明可以促进植物的生长、发育和抗逆性。本研究采用盆栽试验研究了不同含盐量(0、50、100和150mM NaCl)对耐盐大豆(中黄13号)和耐盐大豆品种(东农63号)的影响。此外,选择临界盐浓度(100 mM NaCl),探讨外源硒(0、0.5、1和3 mg·kg−1)在盐胁迫下提高耐盐和耐盐大豆耐盐性的作用。结果表明,随着盐浓度的增加,耐盐大豆和耐盐大豆的株高、茎根鲜重、SPAD值和酶活性均显著降低。外源硒浓度的增加显著降低了盐敏大豆和耐盐大豆的脯氨酸含量,分别降低了40.65–58.87%和38.51–50.46%,MDA含量分别降低了19.33–30.36%和16.94–37.48%。补硒还降低了对盐敏感和耐盐大豆中Na+的含量,改善了大豆对K+的吸收,从而提高了K+/Na+的比例。此外,16S核糖体RNA基因的高通量测序表明,硒的施用优化了耐盐和耐盐大豆品种的根际微生态结构,增强了与根际微生物脂质代谢、能量代谢和细胞运动相关的功能基因。总之,施硒通过增强对盐胁迫的生理抗性和优化根际微生物群落的结构和功能,提高了两个大豆品种的耐盐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Agronomy-Basel
Agronomy-Basel Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
6.20
自引率
13.50%
发文量
2665
审稿时长
20.32 days
期刊介绍: Agronomy (ISSN 2073-4395) is an international and cross-disciplinary scholarly journal on agronomy and agroecology. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Straw Mulching Combined with Phosphorus Fertilizer Increases Fertile Florets of Wheat by Enhancing Leaf Photosynthesis and Assimilate Utilization Design and Parameter Optimization of a Negative-Pressure Peanut Fruit-Soil Separating Device Tomato Recognition and Localization Method Based on Improved YOLOv5n-seg Model and Binocular Stereo Vision Compost Tea as Organic Fertilizer and Plant Disease Control: Bibliometric Analysis Silver and Hematite Nanoparticles Had a Limited Effect on the Bacterial Community Structure in Soil Cultivated with Phaseolus vulgaris L.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1