Polar auxin transport dynamics of primary and secondary vein patterning in dicot leaves

IF 2.6 Q1 AGRONOMY in silico Plants Pub Date : 2021-10-09 DOI:10.1093/insilicoplants/diab030
D. Holloway, C. Wenzel
{"title":"Polar auxin transport dynamics of primary and secondary vein patterning in dicot leaves","authors":"D. Holloway, C. Wenzel","doi":"10.1093/insilicoplants/diab030","DOIUrl":null,"url":null,"abstract":"\n The growth regulator auxin plays a central role in the phyllotaxy, shape, and venation patterns of leaves. The auxin spatial localization underlying these phenomena involves polar auxin transport (PAT) at the cellular level, particularly the preferential allocation of PIN efflux proteins to certain areas of the plasma membrane. Two general mechanisms have been studied: an up-the-gradient (UTG) allocation dependent on neighbouring-cell auxin concentrations, and a with-the-flux (WTF) allocation dependent on the flow of auxin across walls. We have developed a combined UTG+WTF model to quantify the observed auxin flows both towards (UTG) and away from (WTF) auxin maxima during primary and secondary vein patterning in leaves. The model simulates intracellular and membrane kinetics and intercellular transport, and is solved for a 2D leaf of several hundred cells. In addition to normal development, modelling of increasing PAT inhibition generates, as observed experimentally: a switch from several distinct vein initiation sites to many less-distinct sites; a delay in vein canalization; inhibited connection of new veins to old; and finally loss of patterning in the margin, loss of vein extension, and confinement of auxin to the margin. The model generates the observed formation of discrete auxin maxima at leaf vein sources and shows the dependence of secondary vein patterning on the efficacy of auxin flux through cells. Simulations of vein patterning and leaf growth further indicate that growth itself may bridge the spatial scale from the cell-cell resolution of the PIN-auxin dynamics to vein patterns on the whole-leaf scale.","PeriodicalId":36138,"journal":{"name":"in silico Plants","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"in silico Plants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/insilicoplants/diab030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 3

Abstract

The growth regulator auxin plays a central role in the phyllotaxy, shape, and venation patterns of leaves. The auxin spatial localization underlying these phenomena involves polar auxin transport (PAT) at the cellular level, particularly the preferential allocation of PIN efflux proteins to certain areas of the plasma membrane. Two general mechanisms have been studied: an up-the-gradient (UTG) allocation dependent on neighbouring-cell auxin concentrations, and a with-the-flux (WTF) allocation dependent on the flow of auxin across walls. We have developed a combined UTG+WTF model to quantify the observed auxin flows both towards (UTG) and away from (WTF) auxin maxima during primary and secondary vein patterning in leaves. The model simulates intracellular and membrane kinetics and intercellular transport, and is solved for a 2D leaf of several hundred cells. In addition to normal development, modelling of increasing PAT inhibition generates, as observed experimentally: a switch from several distinct vein initiation sites to many less-distinct sites; a delay in vein canalization; inhibited connection of new veins to old; and finally loss of patterning in the margin, loss of vein extension, and confinement of auxin to the margin. The model generates the observed formation of discrete auxin maxima at leaf vein sources and shows the dependence of secondary vein patterning on the efficacy of auxin flux through cells. Simulations of vein patterning and leaf growth further indicate that growth itself may bridge the spatial scale from the cell-cell resolution of the PIN-auxin dynamics to vein patterns on the whole-leaf scale.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双果叶片初生和次生叶脉格局的极性生长素运输动力学
生长调节剂生长素在叶片的叶序、形状和叶序模式中起着核心作用。这些现象背后的生长素空间定位涉及细胞水平的极性生长素转运(PAT),特别是PIN外排蛋白优先分配到质膜的某些区域。已经研究了两种一般机制:向上梯度(UTG)分配取决于相邻细胞生长素浓度,而通量(WTF)分配依赖于生长素跨壁流动。我们开发了一个联合的UTG+WTF模型,以量化在叶片的初级和次级叶脉形成过程中观察到的朝向(UTG)和远离(WTF)生长素最大值的生长素流。该模型模拟了细胞内和膜动力学以及细胞间运输,并对数百个细胞的2D叶片进行了求解。除了正常发育外,正如实验观察到的那样,增加PAT抑制的模型还会产生:从几个不同的静脉起始位点到许多不太明显的位点的转换;静脉导管化延迟;抑制新静脉与旧静脉的连接;最后在边缘失去图案,失去静脉延伸,生长素限制在边缘。该模型产生了在叶脉源处观察到的离散生长素最大值的形成,并显示了二次叶脉模式对生长素通过细胞的效率的依赖性。静脉模式和叶片生长的模拟进一步表明,生长本身可以在空间尺度上从PIN生长素动力学的细胞-细胞分辨率桥接到整个叶片尺度上的静脉模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
in silico Plants
in silico Plants Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
4.70
自引率
9.70%
发文量
21
审稿时长
10 weeks
期刊最新文献
Model-based inference of a dual role for HOPS in regulating guard cell vacuole fusion. Playing a crop simulation model using symbols and sounds: the ‘mandala’ A Scalable Pipeline to Create Synthetic Datasets from Functional-Structural Plant Models for Deep Learning In a PICKLE: A gold standard entity and relation corpus for the molecular plant sciences A comparison of empirical and mechanistic models for wheat yield prediction at field level in Moroccan rainfed areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1