Interaction Design of Educational App Based on Collaborative Filtering Recommendation

IF 2.1 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Advances in Meteorology Pub Date : 2022-05-27 DOI:10.1155/2022/7768730
Ying Xu, Kian Neo Tse, Hin Hew Soon
{"title":"Interaction Design of Educational App Based on Collaborative Filtering Recommendation","authors":"Ying Xu, Kian Neo Tse, Hin Hew Soon","doi":"10.1155/2022/7768730","DOIUrl":null,"url":null,"abstract":"With the advent of the 5G digital era, cell phones are becoming ubiquitous in all aspects of our lives, and the increasing demand for remote interaction makes the app interaction experience an indispensable part of our lives. Due to the operational characteristics of gesture interaction in the interface of a smart terminal application (app), this mode of human-computer interaction has become the mainstream mode of human-computer interaction. Educational app is the result of a combination between mobile Internet technology and education, which not only provides a more efficient and convenient method of learning for each subject but also expands the possibilities for teaching each subject through intelligent interaction. On this basis, this paper proposes an educational app design method based on collaborative filtering recommendations and investigates ways to improve the use of mobile apps to create an interactive teaching mode. Simultaneously, this paper combines user activity, item popularity, and time factors to comprehensively measure user visibility of items and incorporates them into the collaborative filtering recommendation algorithm in order to effectively mitigate the effects of data sparsity and user selection bias and improve recommendation results.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2022/7768730","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

With the advent of the 5G digital era, cell phones are becoming ubiquitous in all aspects of our lives, and the increasing demand for remote interaction makes the app interaction experience an indispensable part of our lives. Due to the operational characteristics of gesture interaction in the interface of a smart terminal application (app), this mode of human-computer interaction has become the mainstream mode of human-computer interaction. Educational app is the result of a combination between mobile Internet technology and education, which not only provides a more efficient and convenient method of learning for each subject but also expands the possibilities for teaching each subject through intelligent interaction. On this basis, this paper proposes an educational app design method based on collaborative filtering recommendations and investigates ways to improve the use of mobile apps to create an interactive teaching mode. Simultaneously, this paper combines user activity, item popularity, and time factors to comprehensively measure user visibility of items and incorporates them into the collaborative filtering recommendation algorithm in order to effectively mitigate the effects of data sparsity and user selection bias and improve recommendation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于协同过滤推荐的教育类App交互设计
随着5G数字时代的到来,手机在我们生活的方方面面都变得无处不在,对远程交互的需求不断增加,使应用交互体验成为我们生活中不可或缺的一部分。由于手势交互在智能终端应用程序界面中的操作特性,这种人机交互模式已成为人机交互的主流模式。教育应用程序是移动互联网技术与教育相结合的产物,它不仅为每门学科提供了更高效、更方便的学习方法,而且通过智能交互扩展了每门学科的教学可能性。在此基础上,本文提出了一种基于协同过滤推荐的教育应用程序设计方法,并研究了提高移动应用程序使用率的方法,以创建一种交互式教学模式。同时,本文结合用户活动性、项目受欢迎程度和时间因素,综合衡量项目的用户可见性,并将其纳入协同过滤推荐算法中,以有效缓解数据稀疏性和用户选择偏差的影响,提高推荐结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Meteorology
Advances in Meteorology 地学天文-气象与大气科学
CiteScore
5.30
自引率
3.40%
发文量
80
审稿时长
>12 weeks
期刊介绍: Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.
期刊最新文献
Sensitivity of WRF-Simulated 2 m Temperature and Precipitation to Physics Options over the Loess Plateau Analysis of Urban Heat Island Effect in Wuhan Urban Area Based on Prediction of Urban Underlying Surface Coverage Type Change Temporal Dynamics and Trend Analysis of Areal Rainfall in Muger Subwatershed, Upper Blue Nile, Ethiopia Statistical Analysis for the Detection of Change Points and the Evaluation of Monthly Mean Temperature Trends of the Moulouya Basin (Morocco) Ultraviolet Radiation Quasi-Periodicities and Their Possible Link with the Cosmic Ray and Solar Interplanetary Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1