{"title":"Influence of annealing on the properties of chemically prepared SnS thin films","authors":"S. John, M. Francis, A. P. Reena Mary, V. Geetha","doi":"10.15251/cl.2023.205.315","DOIUrl":null,"url":null,"abstract":"Thin films of SnS were deposited chemically, and they are annealed at four different temperatures: 100 °C, 150 °C, 200 °C, and 250 °C. X-ray diffraction, Raman analysis, UV-visible spectroscopy, field emission scanning electron microscopy, and energy dispersive spectroscopy were used to investigate the impact of annealing temperature on the structural, optical, morphological, and chemical properties of thin films. As the annealing temperature rose, it was seen from the XRD patterns that the crystallinity of SnS films improved. At 250 °C, the film was almost evaporated, and the XRD pattern showed no peaks at all. The lattice strain and crystallite size were computed from the WilliamsonHall plots. The crystallite size increased and the lattice strain decreased with the increase in the annealing temperature. According to optical investigations, the samples' optical bandgap shrank as the annealing temperature rose. Morphological studies showed the formation of well-adhered films, and as the annealing temperature increased, the film became denser and more continuous with larger grains. The atomic weight percentage of sulphur decreased as the annealing temperature increased, according to the EDS analysis. Photovoltaic structures with the configuration ITO/SnS/CdS/Ag were fabricated. From the I-V characteristics, it was observed that the cell structure formed with SnS annealed at 200 °C showed better cell performance.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/cl.2023.205.315","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thin films of SnS were deposited chemically, and they are annealed at four different temperatures: 100 °C, 150 °C, 200 °C, and 250 °C. X-ray diffraction, Raman analysis, UV-visible spectroscopy, field emission scanning electron microscopy, and energy dispersive spectroscopy were used to investigate the impact of annealing temperature on the structural, optical, morphological, and chemical properties of thin films. As the annealing temperature rose, it was seen from the XRD patterns that the crystallinity of SnS films improved. At 250 °C, the film was almost evaporated, and the XRD pattern showed no peaks at all. The lattice strain and crystallite size were computed from the WilliamsonHall plots. The crystallite size increased and the lattice strain decreased with the increase in the annealing temperature. According to optical investigations, the samples' optical bandgap shrank as the annealing temperature rose. Morphological studies showed the formation of well-adhered films, and as the annealing temperature increased, the film became denser and more continuous with larger grains. The atomic weight percentage of sulphur decreased as the annealing temperature increased, according to the EDS analysis. Photovoltaic structures with the configuration ITO/SnS/CdS/Ag were fabricated. From the I-V characteristics, it was observed that the cell structure formed with SnS annealed at 200 °C showed better cell performance.
期刊介绍:
Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and
appears with twelve issues per year. The journal is open to letters, short communications and breakings news
inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in
structure, properties and applications, as well as those covering special properties in nano-structured
chalcogenides are admitted.