P. R. Viego, J. R. Gómez, Vladimir Sousa, J. P. M. Yanes, E. Quispe
{"title":"Reducing torque pulsations in PMa-SynRM: a way for improving motor performance","authors":"P. R. Viego, J. R. Gómez, Vladimir Sousa, J. P. M. Yanes, E. Quispe","doi":"10.11591/IJPEDS.V12.I1.PP67-79","DOIUrl":null,"url":null,"abstract":"This paper aims to evaluate the performance of synchronous reluctance motors assisted by a permanent magnet (PMa-SynRM) focused on efficiency and torque pulsations. PMa-SynRM shows high efficiency and power factor, compared to induction motors (IM), although they have a greater cost. These machines develop relatively high torque ripple, cogging torque, and torque imbalances. Consequently, the electromagnetic torque is reduced, the motor temperature is increased, and mechanical vibrations are induced. The optimal design of the machine structures such as flow barriers, permanent magnets, and stator slots, among others, allow reducing torque pulsations. A comparison is made between different designs of the PMa-SynRM reported in the scientific literature, and the effects on efficiency, torque pulsation, and operating costs are evaluated. A case study on the motor driving the air conditioner blower in a hotel room was made, to determine the best economic variant between IM or PMa-SynRM. A sensitive analysis was made to evaluate several uncertainties. The advantages of using one of the PMa-SynRM analyzed were demonstrated. Also, it was proved that the investment is feasible economically, although NPV and payback are not the best, due to low load factor in inverter-controlled motors in air conditioners.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"67-79"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V12.I1.PP67-79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 4
Abstract
This paper aims to evaluate the performance of synchronous reluctance motors assisted by a permanent magnet (PMa-SynRM) focused on efficiency and torque pulsations. PMa-SynRM shows high efficiency and power factor, compared to induction motors (IM), although they have a greater cost. These machines develop relatively high torque ripple, cogging torque, and torque imbalances. Consequently, the electromagnetic torque is reduced, the motor temperature is increased, and mechanical vibrations are induced. The optimal design of the machine structures such as flow barriers, permanent magnets, and stator slots, among others, allow reducing torque pulsations. A comparison is made between different designs of the PMa-SynRM reported in the scientific literature, and the effects on efficiency, torque pulsation, and operating costs are evaluated. A case study on the motor driving the air conditioner blower in a hotel room was made, to determine the best economic variant between IM or PMa-SynRM. A sensitive analysis was made to evaluate several uncertainties. The advantages of using one of the PMa-SynRM analyzed were demonstrated. Also, it was proved that the investment is feasible economically, although NPV and payback are not the best, due to low load factor in inverter-controlled motors in air conditioners.
期刊介绍:
International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.