{"title":"Preparation of CdS/g-C3N4 heterojunction photocatalyst with high activity sites by acid treatment","authors":"Y. L. Ma, Y. Tao","doi":"10.15251/cl.2023.202.153","DOIUrl":null,"url":null,"abstract":"The key to achieve efficient degradation of organic pollutants lies in improving the separation efficiency of photogenerated electron-hole pairs in photocatalysts. Here, the hydrogen bonds between g-C3N4 layers were broken by concentrated acid etching and exfoliation to obtain a more dispersed and lighter g-C3N4 nanosheet structure, and then the CdS spherical nanoparticles were dispersed on g-C3N4 nanosheets by hydrothermal method. The optimal loading of CdS on g-C3N4 nanosheets was determined by testing the degradation performance of the composite photocatalysts with different loading amounts. The degradation performance was tested by simulating sunlight using a 700-800 W xenon lamp equipped with a 420 nm cut-off filter, which showed that the degradation of MB by 7% CdS/g-C3N4 photocatalyst was 90.7% for MB. It indicates that concentrated acid treatment and loading of CdS nanoparticles can significantly improve the photocatalytic activity of g-C3N4 nanosheets, which is attributed to the enhancedup conversion function of g-C3N4 by loading CdS to enhance the response range and ability of g-C3N4 in visible light and the photogenerated electron-hole pair separation rate by loading CdS, thus improving the photocatalytic performance of the composite.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/cl.2023.202.153","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The key to achieve efficient degradation of organic pollutants lies in improving the separation efficiency of photogenerated electron-hole pairs in photocatalysts. Here, the hydrogen bonds between g-C3N4 layers were broken by concentrated acid etching and exfoliation to obtain a more dispersed and lighter g-C3N4 nanosheet structure, and then the CdS spherical nanoparticles were dispersed on g-C3N4 nanosheets by hydrothermal method. The optimal loading of CdS on g-C3N4 nanosheets was determined by testing the degradation performance of the composite photocatalysts with different loading amounts. The degradation performance was tested by simulating sunlight using a 700-800 W xenon lamp equipped with a 420 nm cut-off filter, which showed that the degradation of MB by 7% CdS/g-C3N4 photocatalyst was 90.7% for MB. It indicates that concentrated acid treatment and loading of CdS nanoparticles can significantly improve the photocatalytic activity of g-C3N4 nanosheets, which is attributed to the enhancedup conversion function of g-C3N4 by loading CdS to enhance the response range and ability of g-C3N4 in visible light and the photogenerated electron-hole pair separation rate by loading CdS, thus improving the photocatalytic performance of the composite.
期刊介绍:
Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and
appears with twelve issues per year. The journal is open to letters, short communications and breakings news
inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in
structure, properties and applications, as well as those covering special properties in nano-structured
chalcogenides are admitted.