Achieving high strength and rapid degradation in Mg-Gd-Ni alloys by regulating LPSO phase morphology combined with extrusion

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2024-06-01 DOI:10.1016/j.jma.2022.07.015
{"title":"Achieving high strength and rapid degradation in Mg-Gd-Ni alloys by regulating LPSO phase morphology combined with extrusion","authors":"","doi":"10.1016/j.jma.2022.07.015","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, Mg-13.2Gd-4.3Ni alloys containing continuous bulk-shaped long-period stacking ordered (LPSO), lamellar LPSO, and a small amount of eutectic phase were prepared, and the evolution of microstructure at different extrusion temperatures and its influence on mechanical and degradation properties as well as corrosion mechanism were investigated. Preheating before extrusion can effectively promote the precipitation of lamellar LPSO in matrix. EX400 with higher volume fraction of non-DRXed grains exhibited higher strength, which was mainly due to strong texture, high dislocation density, and high volume fraction of lamellar LPSO. The EX420 with higher volume fraction of DRXed grains showed higher degradation rate, which was mainly due to the higher density of grain boundary. The EX400 exhibited excellent comprehensive properties with tensile yield strength (TYS) of 334 MPa, ultimate tensile strength (UTS) of 484 MPa and elongation (EL) of 7.4%, ultimate compressive strength (UCS) of 638 MPa and compressive yield strength (CYS) of 443 MPa, degradation rate of 86.1 mg/cm<sup>2</sup>/h at 93 °C in 3 wt.% KCl solution.</p></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213956722001864/pdfft?md5=ce000b92f57a83f2b620513bc3706037&pid=1-s2.0-S2213956722001864-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956722001864","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, Mg-13.2Gd-4.3Ni alloys containing continuous bulk-shaped long-period stacking ordered (LPSO), lamellar LPSO, and a small amount of eutectic phase were prepared, and the evolution of microstructure at different extrusion temperatures and its influence on mechanical and degradation properties as well as corrosion mechanism were investigated. Preheating before extrusion can effectively promote the precipitation of lamellar LPSO in matrix. EX400 with higher volume fraction of non-DRXed grains exhibited higher strength, which was mainly due to strong texture, high dislocation density, and high volume fraction of lamellar LPSO. The EX420 with higher volume fraction of DRXed grains showed higher degradation rate, which was mainly due to the higher density of grain boundary. The EX400 exhibited excellent comprehensive properties with tensile yield strength (TYS) of 334 MPa, ultimate tensile strength (UTS) of 484 MPa and elongation (EL) of 7.4%, ultimate compressive strength (UCS) of 638 MPa and compressive yield strength (CYS) of 443 MPa, degradation rate of 86.1 mg/cm2/h at 93 °C in 3 wt.% KCl solution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过调节LPSO相形态和挤压相结合实现Mg-Gd-Ni合金的高强度和快速降解
本研究制备了含有连续块状长周期有序堆积(LPSO)、片状 LPSO 和少量共晶相的 Mg-13.2Gd-4.3Ni 合金,并研究了不同挤压温度下微观结构的演变及其对力学性能、降解性能和腐蚀机理的影响。结果表明:挤压前预热可有效促进片状 LPSO 在基体中的析出。非DRX化晶粒体积分数较高的EX400具有较高的强度,这主要归因于较强的质构、较高的位错密度和较高的片状LPSO体积分数。具有较高 DRX 化晶粒体积分数的 EX420 具有较高的降解率,这主要是由于晶界密度较高。EX400 表现出优异的综合性能,其拉伸屈服强度(TYS)为 334 MPa,极限拉伸强度(UTS)为 484 MPa,伸长率(EL)为 7.4%;极限抗压强度(UCS)为 638 MPa,抗压屈服强度(CYS)为 443 MPa;在 93 °C 的 3 wt.% KCl 溶液中的降解率为 86.1 mg/cm2/h。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
Research advances of magnesium and magnesium alloys globally in 2023 Orchestrated degradation behavior of Mg mesh for calvarial bone defect reconstruction Magnesium alloys as alternative anode materials for rechargeable magnesium-ion batteries: Review on the alloying phase and reaction mechanisms Ti3C2Tx MXene-functionalized Hydroxyapatite/Halloysite nanotube filled poly– (lactic acid) coatings on magnesium: In vitro and antibacterial applications Twinning mediated anisotropic fracture behavior in bioimplant grade hot-rolled pure magnesium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1