Developing a multi-label tinyML machine learning model for an active and optimized greenhouse microclimate control from multivariate sensed data

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY Artificial Intelligence in Agriculture Pub Date : 2022-01-01 DOI:10.1016/j.aiia.2022.08.003
Ilham Ihoume, Rachid Tadili, Nora Arbaoui, Mohamed Benchrifa, Ahmed Idrissi, Mohamed Daoudi
{"title":"Developing a multi-label tinyML machine learning model for an active and optimized greenhouse microclimate control from multivariate sensed data","authors":"Ilham Ihoume,&nbsp;Rachid Tadili,&nbsp;Nora Arbaoui,&nbsp;Mohamed Benchrifa,&nbsp;Ahmed Idrissi,&nbsp;Mohamed Daoudi","doi":"10.1016/j.aiia.2022.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>In the uncertainties within which the worldwide food security lies nowadays, the agricultural industry is raising a crucial need for being equipped with the state-of-the-art technologies for a more efficient, climate-resilient and sustainable production. The traditional production methods have to be revisited, and opportunities should be given for the innovative solutions henceforth brought by big data analytics, cloud computing and internet of things (IoT). In this context, we develop an optimized tinyML-oriented model for an active machine learning-based greenhouse microclimate management to be integrated in an on-field microcontroller. We design an experimental strawberry greenhouse from which we collect multivariate climate data through installed sensors. The obtained values' combinations are labeled according to a five-action multi-label control strategy, then used to prepare a machine learning-ready dataset. The dataset is used to train and five-fold cross-validate 90 Multi-Layer Perceptrons (MLPs) with varied hyperparameters to select the most performant –yet optimized– model instance for the addressed task. Our multi-label control approach enables designing highly scalable models with reduced computational complexity, comprising only <em>n</em> control neurons instead of (1 + ∑<sub><em>n</em></sub><sup><em>k</em>=1</sup><em>C</em><sub><em>n</em></sub><sup><em>k</em></sup>) neurons (usually generated from a classic single-label approach from <em>n</em> input variables). Our final selected model incorporates 2 hidden layers with 7 and 8 neurons respectively and 151 parameters; it scored a mean accuracy of 97% during the cross-validation phase, then 96% on our supplementary test set. The model enables an intelligent and autonomous greenhouse management with the less required computations. It can be efficiently deployed in microcontrollers within real world operating conditions.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"6 ","pages":"Pages 129-137"},"PeriodicalIF":8.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721722000101/pdfft?md5=73a9c3cd093ea0be14dfa96d10299fd2&pid=1-s2.0-S2589721722000101-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721722000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

In the uncertainties within which the worldwide food security lies nowadays, the agricultural industry is raising a crucial need for being equipped with the state-of-the-art technologies for a more efficient, climate-resilient and sustainable production. The traditional production methods have to be revisited, and opportunities should be given for the innovative solutions henceforth brought by big data analytics, cloud computing and internet of things (IoT). In this context, we develop an optimized tinyML-oriented model for an active machine learning-based greenhouse microclimate management to be integrated in an on-field microcontroller. We design an experimental strawberry greenhouse from which we collect multivariate climate data through installed sensors. The obtained values' combinations are labeled according to a five-action multi-label control strategy, then used to prepare a machine learning-ready dataset. The dataset is used to train and five-fold cross-validate 90 Multi-Layer Perceptrons (MLPs) with varied hyperparameters to select the most performant –yet optimized– model instance for the addressed task. Our multi-label control approach enables designing highly scalable models with reduced computational complexity, comprising only n control neurons instead of (1 + ∑nk=1Cnk) neurons (usually generated from a classic single-label approach from n input variables). Our final selected model incorporates 2 hidden layers with 7 and 8 neurons respectively and 151 parameters; it scored a mean accuracy of 97% during the cross-validation phase, then 96% on our supplementary test set. The model enables an intelligent and autonomous greenhouse management with the less required computations. It can be efficiently deployed in microcontrollers within real world operating conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据多变量传感数据开发一个用于主动优化温室小气候控制的多标签tinyML机器学习模型
在当今世界粮食安全的不确定性中,农业行业迫切需要配备最先进的技术,以实现更高效、更适应气候变化和可持续的生产。必须重新审视传统的生产方式,为大数据分析、云计算和物联网带来的创新解决方案提供机会。在这种情况下,我们开发了一个优化的面向tinml的模型,用于基于主动机器学习的温室小气候管理,并将其集成到现场微控制器中。我们设计了一个草莓温室,通过安装传感器收集多变量气候数据。根据五动作多标签控制策略对得到的值的组合进行标记,然后用于准备机器学习准备数据集。该数据集用于训练和五倍交叉验证90个具有不同超参数的多层感知器(mlp),以为所处理的任务选择性能最佳但优化的模型实例。我们的多标签控制方法能够设计具有较低计算复杂性的高度可扩展模型,仅包含n个控制神经元,而不是(1 +∑nk=1Cnk)神经元(通常由n个输入变量的经典单标签方法生成)。我们最终选择的模型包含2个隐藏层,分别有7个和8个神经元,151个参数;它在交叉验证阶段的平均准确率为97%,然后在我们的补充测试集中达到96%。该模型使温室管理智能化、自主化,减少了计算量。它可以在实际操作条件下有效地部署在微控制器中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Enhancing crop yield prediction in Senegal using advanced machine learning techniques and synthetic data Neural network architecture search enabled wide-deep learning (NAS-WD) for spatially heterogenous property awared chicken woody breast classification and hardness regression Utility-based regression and meta-learning techniques for modeling actual ET: Comparison to (METRIC-EEFLUX) model Detectability of multi-dimensional movement and behaviour in cattle using sensor data and machine learning algorithms: Study on a Charolais bull Estimating TYLCV resistance level using RGBD sensors in production greenhouse conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1