Conditioning Boltzmann generators for rare event sampling

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2023-08-30 DOI:10.1088/2632-2153/acf55c
S. Falkner, Alessandro Coretti, Salvatore Romano, P. Geissler, C. Dellago
{"title":"Conditioning Boltzmann generators for rare event sampling","authors":"S. Falkner, Alessandro Coretti, Salvatore Romano, P. Geissler, C. Dellago","doi":"10.1088/2632-2153/acf55c","DOIUrl":null,"url":null,"abstract":"Understanding the dynamics of complex molecular processes is often linked to the study of infrequent transitions between long-lived stable states. The standard approach to the sampling of such rare events is to generate an ensemble of transition paths using a random walk in trajectory space. This, however, comes with the drawback of strong correlations between subsequently sampled paths and with an intrinsic difficulty in parallelizing the sampling process. We propose a transition path sampling scheme based on neural-network generated configurations. These are obtained employing normalizing flows, a neural network class able to generate statistically independent samples from a given distribution. With this approach, not only are correlations between visited paths removed, but the sampling process becomes easily parallelizable. Moreover, by conditioning the normalizing flow, the sampling of configurations can be steered towards regions of interest. We show that this approach enables the resolution of both the thermodynamics and kinetics of the transition region for systems that can be sampled using exact-likelihood generative models.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/acf55c","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Understanding the dynamics of complex molecular processes is often linked to the study of infrequent transitions between long-lived stable states. The standard approach to the sampling of such rare events is to generate an ensemble of transition paths using a random walk in trajectory space. This, however, comes with the drawback of strong correlations between subsequently sampled paths and with an intrinsic difficulty in parallelizing the sampling process. We propose a transition path sampling scheme based on neural-network generated configurations. These are obtained employing normalizing flows, a neural network class able to generate statistically independent samples from a given distribution. With this approach, not only are correlations between visited paths removed, but the sampling process becomes easily parallelizable. Moreover, by conditioning the normalizing flow, the sampling of configurations can be steered towards regions of interest. We show that this approach enables the resolution of both the thermodynamics and kinetics of the transition region for systems that can be sampled using exact-likelihood generative models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于罕见事件采样的条件Boltzmann发生器
了解复杂分子过程的动力学通常与研究长寿命稳定状态之间的罕见跃迁有关。对这种罕见事件进行采样的标准方法是使用轨迹空间中的随机行走生成过渡路径集合。然而,这带来了随后采样的路径之间的强相关性的缺点,以及并行化采样过程的内在困难。我们提出了一种基于神经网络生成配置的过渡路径采样方案。这些是使用归一化流获得的,归一化流是一种能够从给定分布中生成统计独立样本的神经网络类。使用这种方法,不仅消除了访问路径之间的相关性,而且采样过程变得容易并行。此外,通过调节归一化流,可以将配置的采样导向感兴趣的区域。我们表明,对于可以使用精确似然生成模型采样的系统,这种方法能够同时解析过渡区的热力学和动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Quality assurance for online adaptive radiotherapy: a secondary dose verification model with geometry-encoded U-Net. Optimizing ZX-diagrams with deep reinforcement learning DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data Equivariant tensor network potentials Masked particle modeling on sets: towards self-supervised high energy physics foundation models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1