Rim M. Alsharabi, Suyash Rai, Hamed Y. Mohammed, Maamon A. Farea, S. Srinivasan, P. Saxena, A. Srivastava
{"title":"A Comprehensive Review on Graphene-based Materials as Biosensors for Cancer Detection","authors":"Rim M. Alsharabi, Suyash Rai, Hamed Y. Mohammed, Maamon A. Farea, S. Srinivasan, P. Saxena, A. Srivastava","doi":"10.1093/oxfmat/itac013","DOIUrl":null,"url":null,"abstract":"\n Nowadays, cancer is increasingly becoming one of the foremost threats to human being life worldwide, and diagnosing this deadly disease is one of the major priorities of researchers. Described as a monolayer-thin-sheet of hexagonally patterned carbon atoms, ‘graphene’ is considered an innovative evergreen carbon material ideal for a wide array of sensing applications and nanotechnologies. Graphene-based materials have acquired a huge share of interest in the scope of biosensor fabrication for early and accurate cancer diagnosis. Herein, we have insights reviewed the various routes and technologies for synthesized graphene, and graphene-based materials including 3D graphene (i.e., hydrogels, foams, sponges, porous), and 0D graphene (i.e., quantum dots). Moreover, we have introduced the different types of graphene/graphene-based materials biosensors (i.e., electrochemical biosensors, optical biosensors, field-effect transistors biosensors, electrochemiluminescence biosensors, and microfluidics biosensors) and their merits and applications for cancer pre-stage detection.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open materials science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfmat/itac013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Nowadays, cancer is increasingly becoming one of the foremost threats to human being life worldwide, and diagnosing this deadly disease is one of the major priorities of researchers. Described as a monolayer-thin-sheet of hexagonally patterned carbon atoms, ‘graphene’ is considered an innovative evergreen carbon material ideal for a wide array of sensing applications and nanotechnologies. Graphene-based materials have acquired a huge share of interest in the scope of biosensor fabrication for early and accurate cancer diagnosis. Herein, we have insights reviewed the various routes and technologies for synthesized graphene, and graphene-based materials including 3D graphene (i.e., hydrogels, foams, sponges, porous), and 0D graphene (i.e., quantum dots). Moreover, we have introduced the different types of graphene/graphene-based materials biosensors (i.e., electrochemical biosensors, optical biosensors, field-effect transistors biosensors, electrochemiluminescence biosensors, and microfluidics biosensors) and their merits and applications for cancer pre-stage detection.