Shivshankar Prasad , Al Jaradah Khalid , Vivek Narishetty , Vinod Kumar , Suman Dutta , Ejaz Ahmad
{"title":"Recent advances in the production of 2,5-furandicarboxylic acid from biorenewable resources","authors":"Shivshankar Prasad , Al Jaradah Khalid , Vivek Narishetty , Vinod Kumar , Suman Dutta , Ejaz Ahmad","doi":"10.1016/j.mset.2023.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>Bio-based renewable resources have emerged as strong contenders to produce fuels and chemicals via carbon–neutral and eco-friendly methods. In particular, 2,5 furandicarboxylic acid (FDCA) which is listed among the top 12 platform molecules, can be used to produce bio-based polymer as an alternative to polyethylene terephthalate (PET). Notably, FDCA can be produced from an array of biorenewable resources using catalytic materials. However, biomass-derived 5-hydroxymethylfurfural (HMF) remains the primary feedstock to produce FDCA. Thus, the current review focuses on the recent advances in FDCA application and production via catalytic routes, particularly from HMF and other biorenewable feedstocks. Accordingly, the effect of different noble metal and noble metal-free catalytic materials on feedstock conversion and FDCA yield has been discussed. Moreover, the effect of operating conditions such as solvent, bases, oxygen sources, temperature and pressure has been discussed.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 502-521"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299123000228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2
Abstract
Bio-based renewable resources have emerged as strong contenders to produce fuels and chemicals via carbon–neutral and eco-friendly methods. In particular, 2,5 furandicarboxylic acid (FDCA) which is listed among the top 12 platform molecules, can be used to produce bio-based polymer as an alternative to polyethylene terephthalate (PET). Notably, FDCA can be produced from an array of biorenewable resources using catalytic materials. However, biomass-derived 5-hydroxymethylfurfural (HMF) remains the primary feedstock to produce FDCA. Thus, the current review focuses on the recent advances in FDCA application and production via catalytic routes, particularly from HMF and other biorenewable feedstocks. Accordingly, the effect of different noble metal and noble metal-free catalytic materials on feedstock conversion and FDCA yield has been discussed. Moreover, the effect of operating conditions such as solvent, bases, oxygen sources, temperature and pressure has been discussed.