Li Jinchao, K. Susan, Yu Seok-Yeong, Tang Ying, Kim Young-Cheul, Chung Soonkyu, L. Zhenhua
{"title":"The Genetic Ablation of TNF-α Attenuates Wnt-Signaling and Adiposity in High Fat Diet-Induced Obese Mice","authors":"Li Jinchao, K. Susan, Yu Seok-Yeong, Tang Ying, Kim Young-Cheul, Chung Soonkyu, L. Zhenhua","doi":"10.36959/487/290","DOIUrl":null,"url":null,"abstract":"A chronic low-grade inflammation is considered as a consequence of obesity, and linked with multiple complications. However, it is under-investigated how inflammatory cytokines mediate adipogenesis. This study investigated the role of Tumor Necrosis Factor α (TNF-α) on adipogenes is over high-fat diet feeding. Three groups of wild type or TNF-α-/mice with the same C57BL/6 genetic background were utilized in this study: wild type fed with a low-fat diet (WT-LFD), wild type fed with a high-fat diet (WT-HFD), and TNF-α-/fed with a HFD (TNF-HFD). After 16-wk feeding, inflammatory cytokine, Wnt pathway and adipogenesis-related genes were analyzed. HFD feeding increased body weight in both WTHFD and TNF-HFD groups, but genetic ablation of TNF-α attenuated HFD-induced obesity. In visceral adipose tissues, HFD elevated Wnt/β-catenin signaling, indicated by decreased phospho-GSK3β and active β-catenin, two key components within the Wnt pathway, and dysregulated adipogenesis, indicated by reduced PPARγ/CEBPα expressions. Whereas, the deletion of TNF-α suppressed Wnt-signaling, and restored expressions of adipogenes is-related genes, which were otherwise decreased in the HFD-induced obese animals. These findings demonstrated a critical role of TNF-α in the regulation of Wnt-signaling and adiposity in mice over a HFD feeding, indicating HFD-induced adipocyte dysfunction could be mitigated by targeting TNF-α and Wnt-signaling.","PeriodicalId":76005,"journal":{"name":"Journal of human nutrition","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of human nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36959/487/290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A chronic low-grade inflammation is considered as a consequence of obesity, and linked with multiple complications. However, it is under-investigated how inflammatory cytokines mediate adipogenesis. This study investigated the role of Tumor Necrosis Factor α (TNF-α) on adipogenes is over high-fat diet feeding. Three groups of wild type or TNF-α-/mice with the same C57BL/6 genetic background were utilized in this study: wild type fed with a low-fat diet (WT-LFD), wild type fed with a high-fat diet (WT-HFD), and TNF-α-/fed with a HFD (TNF-HFD). After 16-wk feeding, inflammatory cytokine, Wnt pathway and adipogenesis-related genes were analyzed. HFD feeding increased body weight in both WTHFD and TNF-HFD groups, but genetic ablation of TNF-α attenuated HFD-induced obesity. In visceral adipose tissues, HFD elevated Wnt/β-catenin signaling, indicated by decreased phospho-GSK3β and active β-catenin, two key components within the Wnt pathway, and dysregulated adipogenesis, indicated by reduced PPARγ/CEBPα expressions. Whereas, the deletion of TNF-α suppressed Wnt-signaling, and restored expressions of adipogenes is-related genes, which were otherwise decreased in the HFD-induced obese animals. These findings demonstrated a critical role of TNF-α in the regulation of Wnt-signaling and adiposity in mice over a HFD feeding, indicating HFD-induced adipocyte dysfunction could be mitigated by targeting TNF-α and Wnt-signaling.