{"title":"A method for modelling greenhouse temperature using gradient boost decision tree","authors":"Wentao Cai , Ruihua Wei , Lihong Xu , Xiaotao Ding","doi":"10.1016/j.inpa.2021.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>An accurate environment model is a fundamental issue in greenhouses control to improve the energy consumption efficiency and to increase the crop yield. With the increase of agricultural data generated by the Internet of Things (IoT), more feasible models are necessary to get full usage of such information. In this research, a Gradient Boost Decision Tree (GBDT) model based on the newly-developed Light Gradient Boosting Machine algorithm (LightGBM or LGBM) was proposed to model the internal temperature of a greenhouse. Features including climate variables, control variables and additional temporal information collected within five years were used to construct a suitable dataset to train and validate the LGBM model. An adaptive cross-validation method was developed as a novelty to improve the LGBM model performance and self-adaptive ability. For comparison of the predictive accuracy, a Back-Propagation (BP) Neural Network model and a Recurrent Neural Network (RNN) model were built under the same process. Another two GBDT algorithms, Extreme Gradient Boosting (Xgboost) and Stochastic Gradient Boosting (SGB), were also introduced to compare the predictive accuracy with LGBM model. Results suggest that the LGBM has best fitting ability for the temperature curves with RMSE value at 0.645℃, as well as the fastest training speed among all algorithms with 60 times faster than the other two neural network algorithms. The LGBM has strongly potential application prospect on both greenhouse environment prediction and real-time predictive control.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"9 3","pages":"Pages 343-354"},"PeriodicalIF":7.7000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.inpa.2021.08.004","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 29
Abstract
An accurate environment model is a fundamental issue in greenhouses control to improve the energy consumption efficiency and to increase the crop yield. With the increase of agricultural data generated by the Internet of Things (IoT), more feasible models are necessary to get full usage of such information. In this research, a Gradient Boost Decision Tree (GBDT) model based on the newly-developed Light Gradient Boosting Machine algorithm (LightGBM or LGBM) was proposed to model the internal temperature of a greenhouse. Features including climate variables, control variables and additional temporal information collected within five years were used to construct a suitable dataset to train and validate the LGBM model. An adaptive cross-validation method was developed as a novelty to improve the LGBM model performance and self-adaptive ability. For comparison of the predictive accuracy, a Back-Propagation (BP) Neural Network model and a Recurrent Neural Network (RNN) model were built under the same process. Another two GBDT algorithms, Extreme Gradient Boosting (Xgboost) and Stochastic Gradient Boosting (SGB), were also introduced to compare the predictive accuracy with LGBM model. Results suggest that the LGBM has best fitting ability for the temperature curves with RMSE value at 0.645℃, as well as the fastest training speed among all algorithms with 60 times faster than the other two neural network algorithms. The LGBM has strongly potential application prospect on both greenhouse environment prediction and real-time predictive control.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining