Hydroxyapatite Modified Silica Aerogel Nanoparticles: In Vitro Cell Migration Analysis

Q3 Biochemistry, Genetics and Molecular Biology Biointerface Research in Applied Chemistry Pub Date : 2022-10-07 DOI:10.33263/briac134.373
{"title":"Hydroxyapatite Modified Silica Aerogel Nanoparticles: In Vitro Cell Migration Analysis","authors":"","doi":"10.33263/briac134.373","DOIUrl":null,"url":null,"abstract":"The ability of silica aerogel nanoparticles (SA-Np) to improve the stability of hydroxyapatite (HA) was investigated. Using the sol-gel method, the HA was incorporated into SA-Np at a weight ratio of 0.5 of HA to SiO2 (HA-SA-Np). The efficacy of HA-SA-Np, SA-Np, and HA on the in vitro migration of normal human dermal fibroblast cells (HSF1184) was compared. The cell migration was measured at 0, 6, and 24 hours after scratching using ImageJ and an inverted optical microscope. To ascertain the resorbability of HA-SA-Np, the phosphate and silicic acid concentrations in media treated for 2, 5, and 7 days were examined. The high dissolution of HA could be reduced by incorporating the HA into the silica nanosphere. The HA-SA-Np significantly stimulated cell migration and increased closure with increasing treatment time. It was caused by the release of silicic acid, which aided in healing cells. It also demonstrates the ability of HA-SA-Np to be resorbed and eventually increase the adhesion and migration of normal human fibroblast cells. As a result, the potential application of HA-SA-Np as an alternative biomaterial was confirmed.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of silica aerogel nanoparticles (SA-Np) to improve the stability of hydroxyapatite (HA) was investigated. Using the sol-gel method, the HA was incorporated into SA-Np at a weight ratio of 0.5 of HA to SiO2 (HA-SA-Np). The efficacy of HA-SA-Np, SA-Np, and HA on the in vitro migration of normal human dermal fibroblast cells (HSF1184) was compared. The cell migration was measured at 0, 6, and 24 hours after scratching using ImageJ and an inverted optical microscope. To ascertain the resorbability of HA-SA-Np, the phosphate and silicic acid concentrations in media treated for 2, 5, and 7 days were examined. The high dissolution of HA could be reduced by incorporating the HA into the silica nanosphere. The HA-SA-Np significantly stimulated cell migration and increased closure with increasing treatment time. It was caused by the release of silicic acid, which aided in healing cells. It also demonstrates the ability of HA-SA-Np to be resorbed and eventually increase the adhesion and migration of normal human fibroblast cells. As a result, the potential application of HA-SA-Np as an alternative biomaterial was confirmed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
羟基磷灰石改性二氧化硅气凝胶纳米粒子的体外细胞迁移分析
研究了二氧化硅气凝胶纳米粒子(SA Np)改善羟基磷灰石(HA)稳定性的能力。使用溶胶-凝胶法,将HA以HA与SiO2(HA-SA-Np)的0.5的重量比掺入SA-Np中。比较了HA、SA和HA对正常人真皮成纤维细胞(HSF1184)体外迁移的影响。使用ImageJ和倒置光学显微镜在刮擦后0、6和24小时测量细胞迁移。为了确定HA-SA-Np的可吸收性,检测处理2、5和7天的培养基中的磷酸盐和硅酸浓度。通过将HA掺入二氧化硅纳米球中,可以降低HA的高溶解性。HA SA Np显著刺激细胞迁移,并随着处理时间的增加而增加闭合。它是由硅酸的释放引起的,硅酸有助于细胞的愈合。它还证明了HA-SA-Np被再吸收并最终增加正常人成纤维细胞的粘附和迁移的能力。因此,HA-SA-Np作为一种替代生物材料的潜在应用得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
256
期刊介绍: Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.
期刊最新文献
Editorial. Thirteen Years of Free Publication: From the Optimistic Horizons to Failure and Discreditation Comparative Review of Different Adsorption Techniques Used in Heavy Metals Removal in Water Microstructure and Elastic Properties of Hydroxyapatite/Alumina Nanocomposites Prepared by Mechanical Alloying Technique for Biomedical Applications Investigation on Controlling Therapy of Bone Skeletal and Marrow Cancer: A Biophysical Chemistry and Molecular Dynamic Study of Bisphosphonates Interaction with Bone Structures The Theoretical Description for Amavadin-Ion Electrochemical Determination in Amanita muscaria Mushroom Pulp and Extract by Galvanostatic Conducting Polymer Doping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1